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Abstract– The thermal performances of the heat sink with un-uniform fin width designs with base 
plates and carbon nano tube coating were investigated experimentally and numerically. Realistic, 
manufacturable geometries are considered for minimizing thermal resistance at low velocity. The 
parameters include the Reynolds number (Re = 5000 - 25000), five fin width design (Type - a to 
Type - e), three base plates (copper, ccc and copper-diamond composite) and carbon nano tube 
coating. In this study, the effects of base plates and nano coating on thermal performance of heat 
sinks with un-uniform fin width are experimentally studied. Experimental results show that among 
the many design parameters such as base plates and nano coating, composite base plate has a more 
significant influence on the thermal performance of heat sinks. It is also found that there is 
potential for optimizing the un-uniform fin width heat sinks with base plates and nano coating.          

 
Keywords– Base plates and nano coating, forced cooling of electronic devices, computational fluid dynamics, un-
uniform fin width heat sinks  
 

1. INTRODUCTION 
 

With the rapid development of electronic technology, electronic appliances and devices are now a part of 
our daily life. The heat flux per unit area has increased significantly over the past few years due to the 
condition of multifunction, shrinking package size, high clock speed, and higher power dissipations. 
Among the novel methods for thermal management of the high heat fluxes found in microelectronic 
devices, forced air cooled heat sinks are the most effective at heat removal, especially for desktop 
computer. Thus the thermal and flow characteristics of heat sinks have been the interest of many 
investigators. A large number of recent investigations have studied the forced air cooled heat sinks for 
electronics cooling as well as to compare the flow and heat transfer characteristics of heat sinks. The 
thermal performance of the heat pipe and heat sink for electronics cooling under different conditions has 
been studied by many researchers. Also, the literature on the variety of heat sinks used in different 
electronic applications has been identified. Finned heat sinks are most widely used as a thermal solution to 
ensure the reliability of electronic devices [1, 2]. There are many researches on heat transfer in electronic 
cooling, such as heat pipe [3-4], jet impingement cooling [5-6] and microchannel heat sink [7], etc. 
Several researchers have examined the thermal and flow characteristics of various heat sinks extensively. 
Seyf and Layeghi [8] have carried out a numerical analysis to determine flow and heat transfer 
characteristics of elliptical pin fin heat sinks with and without metal foam inserts. Kuznetsov et al. [9] 
investigated numerically the thermal characteristics of a pin-fin heat sink. An aluminum foam heat sink 
placed horizontally in a channel was modeled as a hydraulically and thermal anisotropic porous medium. 
It was shown that the anisotropy in the permeability and the effective thermal conductivity changes the 
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heat transfer rate of the heat sink substantially, and the optimum porosity for maximum thermal 
dissipation depends significantly on the pin-fin thickness, the pin-fin height and the Reynolds number. 
Sivasankaran et al. [10] have studied the experimental investigation of parallel plate fin and cross cut pin 
fin heat sinks where the heating element is placed asymmetrically. The thermal performance, heat transfer 
coefficient and efficiencies have been compared for various heat sinks. Kim et al. [11] have compared the 
thermal performances of the two types of heat sinks most commonly used in the electronic equipment 
cooling: plate-fin and pin-fin heat sinks. In order to obtain the fluid flow and thermal characteristics of 
heat sinks, an experimental investigation is conducted. Jonsson, and   Moshfegh  [12] have conducted tests 
in a wind tunnel with seven types of heat sinks including plate fin, strip fin, and pin fin heat sinks. In the 
case of strip fin, and pin fin heat sinks, both in-line and staggered arrays have been studied. Kim et al. [13] 
have conducted the thermal optimization of a plate-fin heat sink with the fin thickness varying in the 
direction normal to the fluid flow. Kim and Kim [14] have experimentally studied the effects of cross-cuts 
on the thermal performance of heat sinks under the parallel flow condition. Hwang and Lui [15, 16] 
studied the heat transfer and pressure drop characteristics between pin-fin trapezoidal ducts with straight 
and lateral outlet flows. The effect of pin arrangement for the ducts of different direction outlet flow was 
also examined. Moreover, a similarity of the pin Reynolds number dependence of row-averaged Nusselt 
number was developed. An experimental study was conducted to investigate the heat transfer from a 
parallel flat plate heat sink under a turbulent air jet impingement by Sansoucy et al. [17]. The forced 
convection heat transfer rates from a flat plate and from a flat plated heat sink under an impinging 
confined jet have been obtained. In addition, the experimental results were compared with the numerical 
predictions obtained in an earlier study. They concluded that the numerical analysis in a previous study 
was adequate for appraising the mean heat transfer rate in jet impingement for situations of thermal 
management of electronics. Chiang and Chang [18] and Chiang et al. [19] developed the response surface 
methodology (RSM) and applied grey-fuzzy logic to find the optimal values of designing parameters of a 
pin fin type heat sink under constraints of mass and space limitations to achieve the high thermal 
performance. The optimal designing parameters have been carried out and verified by conducting 
confirmation experiments. Li et al. [20] and Li and Chen [21] investigated the thermal performance of pin-
fin and plate-fin heat sinks with confined impingement cooling by using infrared thermography. The 
results show that the thermal resistance of the heat sinks decreases with the increased Reynolds number of 
the impinging jet. However, the reduction of the thermal resistance decreases gradually as the Reynolds 
number increases. Moreover, it revealed that the influence of fin width is more obvious than the fin height. 
In addition, the optimal impinging distance increases with the increasing Reynolds number. Finally, they 
concluded that the thermal performance of the pin-fin heat sinks is superior to that of the plate-fin heat 
ones. Furthermore, the thermal performance of pin-fin heat sinks with air impingement cooling was 
performed numerically and experimentally by Li and Chen [22]. Ozturk [23] has investigated the forced 
cooling of heat sinks mounted on CPUs. Thermal parameters such as heat sink effectiveness, turbulence 
models, radiation and geometry of heat sinks have been analyzed using commercial CFD programs Fluent 
and Icepak. Later, some improvements on heat sinks were decided after carrying out several simulations 
and the results were found to be in good agreement with the experimental values. Ozturk and Tari [24] 
have investigated the flow and temperature fields inside the chassis and also the three different 
commercial heat sink designs have been analysed by using CFD. The flow obstructions in the chassis and 
the resulting air circulation that affect the heat sink temperature distribution are studied. It is 
recommended that a maximum temperature distribution in the heat sink can be reduced by changing the 
geometry, base thickness and especially, replacing aluminum with copper as the heat sink material. The 
four copper fins are used at the center of the heat sink for reducing hot spots. Mohan and Govindarajan 
[25-26] have studied the performance of slot parallel plate fin heat sink, double base plate heat sink, 
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elliptical fin heat sink and pin fin heat sink with various base plate materials. The experimental results are 
compared with CFD results. In this work, the fin thickness, the fin pitch, and the fin height has been 
optimized. Yoshida and Morigami [27] made a new material composed of diamond and copper and 
studied its thermal properties. The effects of diamond particle sizes and the volume fractions of diamond 
on both thermal conductivity and the coefficient of thermal expansion (CTE) were investigated. 
Atashafrooz and Gandjalikhan Nassab [28] studied the simulation for incompressible laminar mixed 
convection flow of a radiating gas in a vertical duct by using CFD techniques.  Earlier research on the 
performance analysis of the heat sink with the effect of various parameters has been carried out. However, 
less work has been done on the effect of different base plate materials, thickness and nano coating. The 
purpose of this study is to examine the effect of the fin shape on the thermal performance of the heat sink 
with base plate and nano coating. In this paper, the experimental analysis of heat sinks with base plate and 
nano coating in thermal-fluid characteristics will be investigated and compared numerically. 
  

2. EXPERIMENTAL SETUP AND PROCEDURE 
 
A schematic diagram of the experimental setup is shown in Fig. 1. The width and height of the wind 
tunnel duct are 150 mm and 120 mm, respectively and the wind tunnel duct has acrylic plates of a 
thickness of 10 mm. A thin film heater fabricated using Kapton-coated stainless steel of a thickness of 0.3 
µm is attached to the bottom surface of a heat sink. It plays the role of a heat source as it is connected to a 
DC power supply. To reduce heat loss, a Bakelite plate with 12 mm thickness is attached to the bottom 
surface of the thin film heater. The Bakelite plate is then attached to the bottom of the wind tunnel duct 
using four screws. There is no clearance between the wind tunnel duct and the two sides of the heat sink. 
The heat sink base and base plate is flush with the bottom wall of the wind tunnel duct. There are 12 
pressure taps at the top wall of the wind tunnel duct to measure the pressure drop across the heat sink 
along the air flow direction. The spacing between any two adjacent pressure taps is 10 mm. The first 
pressure tap is located 30 mm upstream of the heat sink and the last one is located 30 mm downstream of 
the heat sink. The pressure drop across the heat sink is the difference between the pressures measured at 
the first and the last pressure taps. Seventeen K-type thermocouples were used for temperature 
measurement. To measure the maximum temperature of the heat sink, eight thermocouples were mounted 
through 5 mm deep holes at the base plate of the heat sink, which are positioned along the centerline of the 
heat sink. They are 6 mm apart. The first thermocouple is positioned 6 mm from the leading edge of the 
heat sink and the last one is positioned 6 mm from the end of the heat sink. One thermocouple was used to 
measure the inlet temperature. To measure the heat loss another eight thermocouples were attached to the 
Bakelite plate and the inner surface and outer surface of the wind tunnel duct. The uncertainty of each 
thermocouple is approximately 0.75%. A HP 34970A data acquisition unit is utilized to convert the 
electrical signals measured by the thermocouples into temperature information. The test procedures were 
as follows: the desired volume flow rate of the air was generated by a suction-type blower. The heater was 
then powered up to a heat load of 20W and was allowed to stabilize. The heat load was calculated by 
multiplying the current and the voltage drop through the heater. The measured heat losses in the 
experiments were in the range of 3–7% of the heat load supplied by the heater. Once the heat load was 
fixed, the base temperature of the heat sink was monitored. A steady-state was assumed when the change 
in the maximum temperature of the heat sink was smaller than ±0.1°C for a period of 5 min. The 
maximum base temperature of the heat sink and the bulk mean inlet temperature were used to calculate the 
thermal resistance of the heat sink. 

R=
Tw,max -Tbm,in

Q
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3. GOVERNING EQUATIONS FOR FLUID FLOW AND HEAT TRANSFER 
 

The forced convective fluid flow is governed by the continuity equation, momentum equations (Navier-

Strokes equations) and energy equation. The incompressible, turbulent, and steady state fluid flow is 

considered. The buoyancy and radiation heat transfer effects are neglected. In addition, the thermo 

physical properties of the fluid are assumed to be constant. The three-dimensional governing equations of 

mass, momentum, turbulent kinetic energy, turbulent energy dissipation rate, and energy in the steady 

turbulent main flow using the standard k - ε model are as follows:  

Continuity Equation 

	ߩ൫׏	  ሬܸԦ൯ ൌ 0		          (1)  
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Turbulent energy dissipation rate  Equation 
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௞ܲ is the production of the turbulent kinetic energy that is usually modeled as  

௞ܲ		 ൌ 	௧	ܵଶ 

Where S is the modulus of the mean strain rate tensor. The turbulent viscosity is given by  

௧	 ൌ ఓܥ	 	
௞మ

ఌ
  

This model contains five constants and the most commonly used values for those are 

	ఓܥ ൌ 	ఌଵܥ , 0.09 ൌ 	ఌଶܥ , 1.14 ൌ ௞ߪ ,1.92 ൌ ఌߪ ,1.0 ൌ 1.3 
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Table 1. Dimensions of the fins 
 

Fin 
shape 

Fin Width in mm 

B1 B2 B3 B4 B5 

Type-a 2 2 9 9 9 

Type-b 5 5 7 7 7 

Type-c 6.2 6.2 6.2 6.2 6.2 

Type-d 8 8 5 5 5 

Type-e 11 11 3 3 3 
 
                                                   L = 80 mm, W = 80 mm. 

The effects of the different fin width designs on the thermal resistance of heat sink are shown in Fig. 
6. It is observed from  Fig. 6, the thermal resistance of heat sink decreases with increasing Reynolds 
number. The decrement of thermal resistance decreases gradually with the increasing Re from 15000 to 
25000. As shown in Fig. 6 , the thermal performance of heat sink type b is superior to type a at Re = 5000. 
With increasing Reynolds number, the thermal performance of heat sink types c and d exceeds type a 
gradually. From  this figure, except Re = 25000, we may reasonably conclude that the type e performance 
will exceed type a at higher Reynolds number. It is observed that the centre temperature of the heat sink is 
much higher than all other sides. Therefore, it is important to enlarge heat sink area and flow rate for the 
efficient heat dissipation in the centre region of the heat sink. In order to increase the performance of heat 
sink and decrease the centre temperature of heat sink, the highly thermal conductivity base plates and nano 
coating have been used in this paper. Although the design of type a could allow more working fluid flows 
into the centre of the heat sink, the fins in the centre region are too thin to dissipate heat efficiently. 
Therefore, the thermal resistance of type a is higher than type b.  
 

 
Fig. 6. Effects of the different fin width designs on thermal resistance 

 
In Fig. 7a-e, the thermal resistance of heat sinks (Type a-e) with different base plates and nano 

coating are compared to those of equivalent heat sinks without base plate. In order to verify the effect of 
the base plates and nano coating, the other parameters of the five types of heat sink, in this case the fin 
width, channel width and size were equalized. As shown in Fig. 7a-e, heat sinks with CuO-Dia base plate 
perform better than other base plates in most experimental ranges. As shown in Fig. 7a, the heat sink with 
ccc base plate performance is identical with copper- diamond base plate. Heat sink with ccc base plate 
perform better by approximately 7.2% compared to the equivalent copper base plate heat sink in the best 
cases. Figure 7a shows the effects of the nano coating on thermal resistance. The thermal resistance of 
nano coated heat sinks are increased up to  3.3% compared to ccc base plate heat sinks. While compared 
to copper base plate heat sinks, the thermal performance is enhanced by approximately  5% .   The trend of 
Fig. 7(b-e) are similar to Fig. 7a except for the heat sink with copper- diamond base plate. Its thermal 
performance is better than ccc base plate. The thermal resistance of type 4 and type 5 heat sink with nano 
coating is identical with ccc base plate at Re = 15000 to 25000. 
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5. CONCLUSION 
 
In this study, the effects of the base plates on thermal performance of heat sinks are experimentally 
investigated at various Reynolds numbers and fin dimensions. The heat transfer enhancement factors 
along with the thermal resistance for the heat sink with base plate and nano coating are found to be lower 
than the heat sink without base plate for all of the invesigated cases. This means that the use of base plates 
and nano coating leads to an advantage of heat transfer enhancement. In this study, it is possible to 
evaluate the thermal performance improvement by utilizing  the un-uniform fin width design of the heat 
sink with base plate. It is found that an adequate un-uniform fin width design could decrease the thermal 
resistance. The thermal resistance of heat sink decreases with the increase of Reynolds number. It is 
observed that, the effects of fin dimensions on the thermal resistance at high Reynolds numbers are more 
obvious than that at low Reynolds numbers.  The results show that there is potential  to optimize the un-
uniform fin width design with and without base plate.   
 

NOMENCLATURES 
 
b  aluminum base thickness (mm) 
B  fin width (mm) 
Bx , By , Bz   components of body force per unit volume of the fluid  in x, y and z directions 
ccc  carbon carbon composite 
Cu  copper 
Dia  diamond 
fp  fin pitch (mm) 
g    gravitational acceleration (m/s2) 
h   total enthalpy (J/kg) 
h   heat transfer coefficient (W/m2K)  
h  fin height (mm) 
k   thermal conductivity of the fluid (W/mK) 
L  heat sink Length (mm) 
NC  nano coating 
Nu   Nusselt number 
P   pressure (bar)   
Pr    Prandtl Number  
Q  power generated (W) 
Ra   Rayleigh Number  
RANS   Reynolds averaged navier stokes  
Rth  thermal Resistance 
T bm, in  bulk mean inlet temperature (K) 
T   ambient temperature (K) 
tb  base plate thickness (mm) 
Tw,max    maximum wall surface temperature (K) 
u, v and w  velocity components(m/s) 
W  heat sink Width (mm) 
 
Greek Symbols 
 
    density (kg/m3) 
   coefficient of cubical expansion  
   viscous dissipation 
gሶ    heat generation per unit volume of the fluid (W/m3) 
 ሬܸԦ            velocity vector,   
 ݇௘௙௙   effective thermal conductivity (W/mK) 
  ௘௙௙  effective viscosityߤ
λ   second viscosity (m) 
 dynamic viscosity (kg/ms)   ߤ
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