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Abstract– The objective of this study is to implement a numerical method which is a combination 
of pseudo-spectral collocation method with a positive scaling factor and extrapolation for solving 
steady, laminar, incompressible, viscous and electrically conducting fluid of the boundary layer 
flow due to a constant temperature rotating disk subjected to a uniform suction and injection 
through its surface in the presence of a uniform transverse magnetic field. These equations are 
obtained from the Navier Stokes equations through the similarity transformations introduced by 
Von Karman in 1921. The proposed solution is equipped by the Chebyshev polynomials that have 
perfect properties to achieve this goal. This method solves the problem on the semi-infinite domain 
without truncating it to a finite domain. In addition, the presented method reduces solution of the 
problem to solution of a system of algebraic equations. The obtained numerical solutions are 
verified by the previous results in the literature.           
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1. INTRODUCTION 
 

Nonlinear phenomena, which appear in many areas of scientific fields such as solid state physics, plasma 
physics, fluid dynamics, mathematical biology and chemical kinetics, can be modeled by nonlinear 
ordinary or partial differential equations. Difficulty of solving the nonlinear problems or obtaining an 
analytic solution, leads to the use of numerical methods. Nowadays, there are several methods that can be 
used to obtain these numerical or analytically approximate solutions. These known methods are, for 
example, Euler method, Runge-Kutta method, multi-step method, Taylor series method, Hybrid methods, 
family of finite difference methods [1, 2], meshless methods, differential quadrature, spectral methods [3-
8] to name a few. Furthermore, there are other methods which give analytically approximate solutions like 
family of finite element methods [9], the δ-expansion method [10], the artificial small parameter method 
[11], perturbation methods [12, 13], the Adomian decomposition method [14], the variational iteration 
method [15, 16], the homotopy perturbation method [17, 18] and the homotopy analysis method [19, 20]. 
 The spectral methods arise from the fundamental problem of approximation of a function by interpolation 
on an interval, and are very powerful tools for solving many types of differential equations in various 
fields of science and engineering [8, 21]. The basic idea of spectral methods to solve differential equations 
is to expand the solution function as a finite series of very smooth basis functions, as given  
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in which, the best choice of ߰௡ሺߦሻ are the eigenfunctions of a singular Sturm-Liouville problem.  
The utility of these methods is based on the fact that if the solution sought is smooth, usually only a 

few terms in an expansion of global basis functions are needed to represent it to high degree of accuracy. 
This efficiency arises due to the nature of spectral coefficients,u୬, which tend to zero faster than any 
negative algebraic power of their index n, showing either exponential or sometimes super-exponential 
convergence [22]. 

The rotating disk flow is one of the classical and important problems in fluid mechanics. The rotating 
disk flows have practical applications in many areas, such as helicopter rotor aerodynamics [23, 24], 
chemical engineering [25], dynamic models [26], magnetic energy propulsion systems, lubrication, 
oceanography and computer storage devices. The fluid flow due to an infinite rotating disk was first 
considered by von Karman in 1921 [27]. He gave a formulation of the problem and then introduced his 
transformations which reduced the governing partial differential equations to ordinary differential 
equations. He also obtained an approximate solution for the problem by using an approximate integral 
method. 

 
a) Literature review 
 

Different techniques have been used to obtain analytical and numerical solutions for rotating disk 
equations. 

Cochran [28] obtained a more accurate solution to the same problem by developing two expansions, a 
Taylor series expansion near the disk and a series solution involving exponentially decaying functions at a 
far distance from the disk and eventually matching the two in some intermediate region. The problem of 
heat transfer from a rotating disk at a constant temperature was first considered by Millsaps and 
Pohlhausen [29] for the values of Prandtl number ሺܲݎሻ between 0.5 and 1.0. Stuart [30] obtained a series 
solution for uniform suction on the flow due to a rotating disk. His solution was obtained by integrating 
the differential equations away from the disk and matching the asymptotic boundary conditions at infinity. 
Sparrow and Gregg [31] developed numerical solutions for the steady state heat transfer from a rotating 
disk maintained at a constant temperature for a range of 0.1 ൏ ݎܲ ൏ 100 by neglecting the dissipative 
terms in the energy equation. Benton [32] improved the steady state solutions given by Cochran [28] and 
extended the problem to the unsteady state. 

The effect of strong injection on the flow induced by the rotating disk was studied by Kuiken [33]. 
Ackroyd [34] showed that the expansion of Cochran is valid for large distances from the disk and can 
actually be extended all the way to the disk. Numerical solutions of the MHD flow near a rotating disk for 
a wide range of imposed magnetic field strengths and injection and suction velocities based on modern 
quasi-Newton and globally convergent homotopy methods have been given by Kumar et al. [35]. Ariel in 
[36] presented an exponentially-decaying solution idea of [34] for the nonconducting fluid flow case to the 
conducting fluid flow of the rotating disk boundary layer. Ariel’s series solution, numerically computed 
the velocity profiles for any value of the magnetic interaction parameter, but the effects of suction or 
blowing through the wall were omitted. Turkyilmazoglu in [37, 38] used the homotopy analysis method to 
solve the equations governing the flow of a steady, laminar, incompressible, viscous, and electrically 
conducting fluid due to a rotating disk subjected to a uniform suction and injection through the walls in the 
presence of a uniform transverse magnetic field. 

 
b) The main aim of the present method 
 

In the present work, a combination of pseudo-spectral collocation method with a positive scaling 
factor and extrapolation is used to solve the MHD flow about a rotating disk subjected to a uniform 
suction and injection with heat transfer. The main point of the present analysis lies in the fact that the 
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present method solves the problem on the semi-infinite domain without truncating it to a finite domain. 
The results are compared with those in the literature [35-38] that include suction/injection and an applied 
magnetic field. 

The outline of the paper is as follows: In section 2, the mathematical formulation is presented. Some 
necessary definitions and mathematical preliminaries of the Chebyshev polynomials are introduced in 
Section 3. In Section 4, a numerical method for solving MHD flow and heat transfer about a rotating disk 
is presented. Results and comparisons with existing methods in the literature are presented in Section 5 
and finally conclusions are drawn in Section 6. 

 
2. MATHEMATICAL FORMULATION 

 
We set the disk in the plane ݖ ൌ 0 and the space ݖ ൐ 0 is filled by a homogeneous, incompressible, 
electrically conducting viscous fluid. A schematic diagram of the problem is shown in Fig. 1. Here 
ሺݎ, ,ߠ  direction, ߱ is the ݖ ሻ are cylindrical coordinates, B଴ is the externally applied magnetic field in theݖ
angular velocity of the disk, ௪ܶ is the uniform temperature at the disk surface and ஶܶ is the ambient fluid 
temperature. The equations of steady motion are as follows [31, 35]:  
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where u, v and w are the velocity components in the ݎ, ,ߠ  is the density of the ߩ ,directions respectively ݖ
fluid, μ is the coefficient of viscosity, ݌ is the pressure and ߪ is the electrical conductivity. The boundary 
conditions are introduced as  
 

ݑ ൌ ݒ				,0 ൌ ݓ				,߱ݎ ൌ െݓ଴	,				ܽݐ					ݖ ൌ 0                                            (5) 

ݑ ൌ ݒ				,0 ൌ ݌							,0 ൌ ݖ						ݐܽ									,0 → ∞				                                       (6) 
 
where ݓ଴ ൐ 0 corresponds to suction and ݓ଴ ൏ 0 corresponds to injection. Kumar et al. [35] introduced 
von Karman transformations as [27]  
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where ߟ is the independent similarity variable and represent a non-dimensional distance measured along 
the axis of rotation, ܨ, ,ܩ  is the kinematic viscosity of ߥ and ߟ and ܲ are non-dimensional functions of ܪ
the fluid, ߥ ൌ  :With these transformations, Eqs. (1)-(4) take the following forms .[27] ߩ/ߤ
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The Nusselt number is given by  
 

ݑܰ ൌ
௤

௞ሺ்ೢ ି ಮ்ሻ
ට
జ

ఠ
                                                                (21) 

 
So, from (20) and (21), we can get the Nusselt number as follows: 
 

ݑܰ ൌ െΘᇱሺ0ሻ                                                                (22) 
 

3. SOME PRELIMINARIES 
  

a) Properties of Chebyshev polynomials 
  
The well known Chebyshev polynomials of the first kind [6] of degree n are defined on the interval 
ሾ	െ1,1ሿ as  
 

௡ܶሺߦሻ ൌ cosሺ݊arccosሺߦሻሻ                                                       (23) 
 
Obviously, ଴ܶሺߦሻ ൌ 1, ଵܶሺߦሻ ൌ   :and they satisfy the recurrence relations ߦ
 

௡ܶାଵሺߦሻ ൌ ߦ2 ௡ܶሺߦሻ െ ௡ܶିଵሺߦሻ,							݊ ൌ 1,2,⋯                                    (24) 
 
Square integrable function ݑሺߦሻ in ሾ	െ1,1ሿ, may be expressed in terms of Chebyshev polynomials as  
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where ݑ෤௝ are the Chebyshev coefficients which are determined by the formulations  
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As it is well-known in Chebyshev pseudo-spectral method, derivatives of the functions uሺξሻ at the 
collocation points are presented as  
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In the above equations ࣞ is the Chebyshev differentiation matrix and N ൅ 1 is the number of 

collocation points (nodes) and ࣞሺଶሻ ൌ ሺࣞሻଶ. The entries of the differentiation matrix ࣞ are given by [42]  
 

ࣞ௜௝ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

ଶேమାଵ

଺
,																													݅ ൌ ݆ ൌ 0				

െ
ଶேమାଵ

଺
,																												݅ ൌ ݆ ൌ ܰ				

െ
௫೔

ଶୱ୧୬మቀ
೔ഏ
ಿ
ቁ
,																				݅ ൌ ݆ ് 0,ܰ				

െ
ଵ

ଶ

௖೔̃
௖ೕ̃

ሺିଵሻ೔శೕ

ୱ୧୬ቀ
ሺ೔శೕሻഏ
మಿ

ቁୱ୧୬ቀ
ሺ೔షೕሻഏ
మಿ

ቁ
,										݅ ് ݆				

                                     (33) 

 
b) Mappings [8, 42] 
 

 A common and effective method for solving differential equation with unbounded domain is to use a 
suitable mapping that transforms a problem with infinite domain to a problem with finite domain. 

 We consider a family of mappings as follows:  
 

ߟ ൌ ݃ሺߦ; ߦ							,ሻܮ ∈ ܫ ൌ ሺെ1,1ሻ,							ߟ ∈ Λ ൌ ሺ0, ൅∞ሻ                                    (34) 
 
 such that  
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Here, the parameter ܮ is a positive scaling factor that is called mapping parameter. Without loss of 
generality, we further assume that the mapping is explicitly invertible, and denote its inverse mapping by  
 

ߦ ൌ ݃ିଵሺߟ; :ሻܮ ൌ ݄ሺߟ; ߟ							,ሻܮ ∈ Λ ൌ ሺ0,൅∞ሻ,									ߦ ∈ ܫ ൌ ሺെ1,1ሻ                           (37) 
 

There are several typical mappings that relate infinite and finite domains to each other, but three specific 
types of mappings, as algebraic, logarithmic, and exponential, are more practical [43]. Boyd in [8, 44] 
offered guidelines for optimizing the map parameter ܮ for rational Chebyshev functions, which is useful 
for the presented method in this paper, too. For a general mapping ߟ ൌ ݃ሺߦ; ;ߦሻ with ݃′ሺܮ ሻܮ ൐ 0, ߦ ∈ ܫ ൌ
ሺെ1,1ሻ, the first and second derivatives of ܷሺߟሻ can be expressed in terms of ξ as follows:  
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4. THE METHOD OF SOLUTION 
 
The present work deals with application of a combination of pseudo-spectral collocation method with a 

positive scaling factor and extrapolation for solving MHD flow and heat transfer about a rotating disk with 

suction and injection. This method solves the problem on the semi-infinite domain without truncating it to 

a finite domain. If semi-infinite domain ሾ0, ൅∞ሻ truncation to a domain ሾ0,  ஶሿ is employed then ηஶ mustߟ
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be chosen. If one knows the rate at which ܷሺߟሻ decays for large ߟ ,ߟஶ can be chosen so that ܷሺߟஶሻ ൏  ߝ

where ε is some user-chosen tolerance. But then one is still faced with choosing the grid spacing h so that 

the error in solving the differential equation on interval ሾ0,  ஶሿ is small. If ݄ is small, the error in solvingߟ

the problem may be very much less than ε, in which case ߟஶ was a bad choice because the domain 

truncation error is dominant, and it would have been better to choose a larger ߟஶ. In this paper, the 

algebraic mapping ߦ ൌ
ఎି௅

ఎା௅
 for converting semi-infinite domain ሾ0, ൅∞ሻ into the computational domain 

ሺെ1,1ሻ is used. For this algebraic mapping, the Eqs. (38) and (39) can be writen as follows:  
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By using (40) and (41), the Eqs. (8)-(10) are converted to the differential equations with boundary 
conditions on interval ሾെ1,1ሿ as follows:  
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ሺ1 െ ሻଷߦ

ௗி

ௗక
ቃ െ ቂ ଵ

ଶ௅
ሺ1 െ ሻଶߦ

ௗி

ௗక
ቃܪ െ ଶܨ ൅ ଶܩ െ ܨ݉ ൌ 0		         (43) 

 

ቂ ଵ

ସ௅మ
ሺ1 െ ሻସߦ

ௗమீ

ௗకమ
െ

ଵ

ଶ௅మ
ሺ1 െ ሻଷߦ

ௗீ

ௗక
ቃ െ ቂ ଵ

ଶ௅
ሺ1 െ ሻଶߦ

ௗீ

ௗక
ቃܪ െ ܩܨ2 െ݉ܩ ൌ 0				         (44) 

 
 and  

ሺെ1ሻܨ ൌ ሺെ1ሻܩ					,0 ൌ ሺെ1ሻܪ						,1 ൌ െ(45)                                     ݏ 
 

ሺ1ሻܨ ൌ ሺ1ሻܩ								,0 ൌ 0				                                                 (46) 
 
Now, we apply Chebyshev pseudo-spectral method to solve the above problem as follows. This method 
involves using the Chebyshev-Gauss-Lobatto points (27) to discrete interval ሾെ1,1ሿ. Consider the 
unknown functions ܨሺߦሻ,  ሻ which can be approximated as a truncated series of Chebyshevߦሺܪ ሻ andߦሺܩ
polynomials  
 

ሻߦሺܨ ≃ ሻߦேሺܨ ൌ ∑ 	ே
௝ୀ଴

ሚ݂
௝ ௝ܶሺߦሻ                                             (47) 

 
ሻߦሺܩ ≃ ሻߦேሺܩ ൌ ∑ 	ே

௝ୀ଴ ෤݃௝ ௝ܶሺߦሻ                                             (48) 
 

ሻߦሺܪ ≃ ሻߦேሺܪ ൌ ∑ 	ே
௝ୀ଴

෨݄
௝ ௝ܶሺߦሻ                                             (49) 

 
where ሚ݂௝ , ෤݃௝ and ෨݄௝ are the Chebyshev coefficients which are determined by the formulations  
 

ሚ݂
௝ ൌ

ଶ

ே௖ೕ̃
∑ 	ே
௜ୀ଴

ଵ

௖೔̃
௜ሻcosߦሺܨ ቀ

గ௜௝

ே
ቁ ,								݆ ൌ 0,1,⋯ ,ܰ                                  (50) 

 

෤݃௝ ൌ
ଶ

ே௖ೕ̃
∑ 	ே
௜ୀ଴

ଵ

௖೔̃
௜ሻcosߦሺܩ ቀ

గ௜௝

ே
ቁ ,							݆ ൌ 0,1,⋯ ,ܰ                                   (51) 

 
෨݄
௝ ൌ

ଶ

ே௖ೕ̃
∑ 	ே
௜ୀ଴

ଵ

௖೔̃
௜ሻcosߦሺܪ ቀ

గ௜௝

ே
ቁ ,							݆ ൌ 0,1,⋯ ,ܰ                                   (52) 

 
By employing derivatives formulations (31) and (32), Eqs. (42)-(46) are transformed to the following 
expressions  
 

௜ሻߦሺܨ2 ൅
ଵ

ଶ௅
ሺ1 െ ௜ሻଶߦ ∑ 	ே

௝ୀ଴ ࣞ௜௝ܪሺߦ௝ሻ ൌ 0				                                        (53) 
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቎
1
ଶܮ4

ሺ1 െ ௜ሻସ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝
ሺଶሻܨሺߦ௝ሻ െ

1
ଶܮ2

ሺ1 െ ௜ሻଷ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝ܨሺߦ௝ሻ቏ 

  െቂ
ଵ

ଶ௅
ሺ1 െ ௜ሻଶߦ ∑ 	ே

௝ୀ଴ ࣞ௜௝ܨሺߦ௝ሻቃ ௜ሻߦሺܪ െ ሾܨሺߦ௜ሻሿଶ ൅ ሾܩሺߦ௜ሻሿଶ െ ௜ሻߦሺܨ݉ ൌ 0				          (54) 
 

቎
1
ଶܮ4

ሺ1 െ ௜ሻସ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝
ሺଶሻܩሺߦ௝ሻ െ

1
ଶܮ2

ሺ1 െ ௜ሻଷ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝ܩሺߦ௝ሻ቏ 

   െቂ
ଵ

ଶ௅
ሺ1 െ ௜ሻଶߦ ∑ 	ே

௝ୀ଴ ࣞ௜௝ܩሺߦ௝ሻቃܪሺߦ௜ሻ െ ௜ሻߦሺܩ௜ሻߦሺܨ2 െ ௜ሻߦሺܩ݉ ൌ 0				                     (55) 
 
where ݅ ൌ 1,2,⋯ ,ܰ െ 1 and  
 

ேሻߦሺܨ ൌ ேሻߦሺܩ							,0 ൌ ேሻߦሺܪ							,1 ൌ െ(56)                                        ݏ 
 

଴ሻߦሺܨ ൌ ଴ሻߦሺܩ							,0 ൌ 0				                                                       (57) 
 

For finding approximate solutions ܨሺߦሻ, ௜ሻሽ௜ୀଵߦሺܨሻ, the values ሼߦሺܪ ሻ andߦሺܩ
ேିଵ, ሼܩሺߦ௜ሻሽ௜ୀଵ

ேିଵ and 
ሼܪሺߦ௜ሻሽ௜ୀ଴

ேିଵ must be calculated. But, the equations (53)-(55) give a system with 3ܰ െ 3 equations and 
3ܰ െ 2 unknowns. To construct the remaining one equation, extrapolation method can be used. 
Extrapolating is defined as estimating a point outside a known data set. Here, we consider ܰ data points 
ሼሺߦ௜, ௜ሻሻሽ௜ୀଵߦሺܪ

ே  generated by the unknown function ܪሺߦሻ. So, we can interpolate Hሺξሻ by the Lagrange 
form of the interpolation polynomial as follows:  
 

ሻߦሺܪ ≃ ∑ 	ே
௝ୀଵ  ሻ                                                         (58)ߦ௝ሺܮ௝ሻߦሺܪ

 
where   

ሻߦ௝ሺܮ ൌ ∏ 	ே
௞ୀଵ,௞ஷ௝

కିకೖ
కೕିకೖ

,								݆ ൌ 1,2,⋯ ,ܰ                                          (59) 
 
are Lagrange polynomials. By collocating (58) in point ξ଴, we obtain  
 

଴ሻߦሺܪ െ ∑ 	ே
௝ୀଵ ଴ሻߦ௝ሺܮ௝ሻߦሺܪ ൌ 0                                                  (60) 

 
Equations (53)-(55) together with Eq. (60) give a ሺ3ܰ െ 2ሻ ൈ ሺ3ܰ െ 2ሻ system of nonlinear equations, 

which can be solved for ሼܨሺߦ௜ሻሽ௜ୀଵ
ேିଵ, ሼܩሺߦ௜ሻሽ௜ୀଵ

ேିଵ and ሼܪሺߦ௜ሻሽ௜ୀ଴
ேିଵ, using Newton’s iterative method [44, 

45]. After evaluating ܨሺߦሻ, ,ሻߟሺܨ ሻ, the original functionsߦሺܪ ሻ andߦሺܩ  ሻ are obtained asߟሺܪ ሻ andߟሺܩ

follows:  
 

ሻߟሺܨ ≃ ሻߟேሺܨ ൌ ∑ 	ே
௝ୀ଴

ሚ݂
௝ ௝ܶ ቀ

ఎି௅

ఎା௅
ቁ                                             (61) 

 

ሻߟሺܩ ≃ ሻߟேሺܩ ൌ ∑ 	ே
௝ୀ଴ ෤݃௝ ௝ܶ ቀ

ఎି௅

ఎା௅
ቁ                                            (62) 

 

ሻߟሺܪ ≃ ሻߟேሺܪ ൌ ∑ 	ே
௝ୀ଴

෨݄
௝ ௝ܶ ቀ

ఎି௅

ఎା௅
ቁ                                            (63) 

 
Now, by using approximate solution (63) for function ܪሺߟሻ, we apply a similar method based on pseudo-
spectral method for solving equation (17). By using (40) and (41), the equations (17) and (18) are 
converted to the differential equations as follows:  
 

ଵ

௉௥
ቂ ଵ

ସ௅మ
ሺ1 െ ሻସߦ

ௗమ஀

ௗకమ
െ

ଵ

ଶ௅మ
ሺ1 െ ሻଷߦ

ௗ஀

ௗక
ቃ െ ቂ ଵ

ଶ௅
ሺ1 െ ሻଶߦ

ௗ஀

ௗక
ቃܪ ቀܮ

ଵାక

ଵିక
ቁ ൌ 0                      (64) 

 
Θሺെ1ሻ ൌ 1,						Θሺ1ሻ ൌ 0				                                                (65) 

 
Consider the unknown function ߆ሺߦሻ can be approximated as a truncated series of Chebyshev polynomials  
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Θሺߦሻ ≃ Θேሺߦሻ ൌ ∑ 	ே
௝ୀ଴ ෨௝ߠ ௝ܶሺߦሻ                                                   (66) 

 
where  
 

෨௝ߠ ൌ
ଶ

ே௖ೕ̃
∑ 	ே
௜ୀ଴

ଵ

௖೔̃
Θሺߦ௜ሻcos ቀ

గ௜௝

ே
ቁ ,							݆ ൌ 0,1,⋯ ,ܰ                                     (67) 

 
By employing derivatives formulations (31) and (32), Eqs. (64) and (65) are transformed to the following 
expressions:  
 

1
ݎܲ

቎
1
ଶܮ4

ሺ1 െ ௜ሻସ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝
ሺଶሻΘሺߦ௝ሻ െ

1
ଶܮ2

ሺ1 െ ௜ሻଷ෍ߦ 	

ே

௝ୀ଴

ࣞ௜௝Θሺߦ௝ሻ቏ 

 

െ ቂ
ଵ

ଶ௅
ሺ1 െ ௜ሻଶߦ ∑ 	ே

௝ୀ଴ ࣞ௜௝Θሺߦ௝ሻቃܪ ቀܮ
ଵାక೔
ଵିక೔

ቁ ൌ 0,									݅ ൌ 1,2,⋯ , ܰ െ 1                   (68) 
 

Θሺߦேሻ ൌ 1,								Θሺߦ଴ሻ ൌ 0				                                                 (69) 
 
Equations (68) give a ሺܰ െ 1ሻ ൈ ሺܰ െ 1ሻ system of linear equations, which can be solved for ሼ߆ሺߦ௜ሻሽ௜ୀଵ

ேିଵ, 
using Newton’s iterative method and we obtain  
 

Θሺߟሻ ≃ Θேሺߟሻ ൌ ∑ 	ே
௝ୀ଴ ෨௝ߠ ௝ܶ ቀ

ఎି௅

ఎା௅
ቁ                                             (70) 

 
Remark 4.1 The values of ܨ′ሺ0ሻ, ,ሺ0ሻ′ܩ ݑܰ ሺ∞ሻ andܪ ൌ െ߆′ሺ0ሻ can be obtained from (61)-(63) and (70) 
as follows:  
 

ሺ0ሻ′ܨ ≃
ଶ

௅
∑ 	ே
௝ୀ଴ ሺെ1ሻ

௝ାଵ݆ଶ ሚ݂௝                                                (71) 
 

ሺ0ሻ′ܩ ≃
ଶ

௅
∑ 	ே
௝ୀ଴ ሺെ1ሻ

௝ାଵ݆ଶ ෤݃௝                                                (72) 
 

ሺ∞ሻܪ ≃ ∑ 	ே
௝ୀ଴

෨݄
௝				                                                        (73) 

 
and  
 

ݑܰ ൌ െΘ′ሺ0ሻ ≃
ଶ

௅
∑ 	ே
௝ୀ଴ ሺെ1ሻ

௝݆ଶߠ෨௝                                             (74) 
 
We note that ௡ܶሺേ1ሻ ൌ ሺേ1ሻ௡ and ܶ′௡ሺേ1ሻ ൌ ሺേ1ሻ௡ାଵ݊ଶ. Furthermore, the value of ܿ in Ariel’s series 
solution [36] can be obtained by solving the nonlinear equation  
 

ܿଶ ൅ ൣ∑ 	ே
௝ୀ଴

෨݄
௝൧ܿ െ ݉ ൌ 0                                                      (75) 

  
5. RESULTS AND DISCUSSION 

 
In this section we present the numerical and graphical results obtained from pseudo-spectral collocation 
method applied to the above problem. This section describes the influence of some governing parameters 
on the velocity and temperature fields. In particular, attention has been focused on the variations of the 
magnetic interaction number m, uniform injection (suction) parameter s and the Prandtl number Pr on the 
velocity and temperature fields, respectively. The current results are compared with the previously 
published results by Kumar et al. [35], Pande [47], Ariel [36] and Turkyilmazoglu [37, 38]. The 
computations were performed using MAPLE 13 with a Personal Computer. Intel Core 2 Duo processor 
with 4 GB RAM is used for the computation. 

Figures 2-4 show the normalized velocity profiles ܨሺߟሻ,  ሻ obtained by the presentedߟሺܪ ሻ andߟሺܩ
method with ܰ ൌ 30 and scaling factor ܮ ൌ 5 in comparison to the numerical solution by the fourth-order 



IJST, Transac

34

Runge-Kutt
(higher neg
due to thick
Figs. 2b an
direction an
values of m
stronger ve
suction) wil
injection pr
the radial di
flow rate (m
same as dec
 

Fig. 2. Radia
(solid-circle)
(box), ݉ ൌ
numerical so
(solid-circle)

ctions of Mech

ta method an
ative values 

kening the bo
nd 2c show t
nd hence wi

magnetic num
elocities in t
ll result in a 
rocess (all va
irection. Reg
more positiv
creasing the m

al velocity ܨሺ
) and ݏ ൌ 2 (a
0.5 (solid-bo

olution (line). 
) and ݉ ൌ 3 (a

anical Enginee

nd shooting m
of s) will re

oundary laye
that increasi
ll oppose th

mber m, incre
the radial di
thinner boun

alues of s), in
garding the in
e values of s
magnetic fiel

ሻ. ሺܽሻ Effecߟ
asterisk) in co
ox), ݉ ൌ 1 (
ሺܿሻ Effect of

asterisk) in co

M.

ering, Volume 3

method. It is
sult in highe
er, the injecti
ng the magn

he induced fl
easing the in
irection, wh
ndary layer th
ncreasing the
nward flow v
s) results in 
ld strength o

t of ݏ, ݉ ൌ 0
mparison to t

(circle), ݉ ൌ
f ݉, ݏ ൌ െ1, 
omparison to t

M. Heydari et al.
 

38, Number M

s seen from F
er radial velo
ion process w
netic numbe
low towards

njection proc
hile increasin
hickness. Fig
e magnetic n
velocity (ܪሺߟ
a higher inw

or m, as may 

         

0.5, for ݏ ൌ െ
the numerical 
2 (solid-circ
for ݉ ൌ 0 (b

the numerical 

. 

M1                      

Fig. 2a that 
ocities due to
will result in

er m causes 
s the disk. F
cess (higher n
ng s toward
gures 3b and
number m w
ሻ), it is seenߟ
ward flow to
be seen in F

2 (box), ݏ ൌ
solution (line

cle) and ݉ ൌ
box), ݉ ൌ 0.5
solution (line

                        

increasing th
the mass flo

n a lower hea
a weaker flo
igure 3a sho
negative valu
s more posi

d 3c show tha
will result in a

n in Fig. 4a t
owards the d
Figs. 4a and 4

 
െ1 (solid-box

e). ሺܾሻ Effect 
ൌ 3 (asterisk) 
5 (solid-box),
e)  

                        

he injection p
ow injected. 
at transfer co
ow field in 
ows that for 
ues of s) wil
itive values 
at for both su
a weaker flo
that increasin
disk. This eff
4b.  

x), ݏ ൌ 0 (cir
of ݉, ݏ ൌ 1, 
 in comparis
, ݉ ൌ 1 (circ

 April 2014 

parameter 
However, 
oefficient. 
the radial 
specified 

ll result in 
(stronger 

uction and 
ow field in 
ng suction 
fect is the 

 

cle), ݏ ൌ 1 
for ݉ ൌ 0 

son to the 
le), ݉ ൌ 2 



April 2014      

Fig. 3. Tang
s ൌ 1 (solid-
m ൌ 0 (box)
numerical so
(solid-circle)

    

Fig. 4. Axial
(solid-circle)
(box), m ൌ 0
solution (line
and m ൌ 3 (a
 

                        

gential velocit
-circle) and s
), m ൌ 0.5 (so
olution (line). 
) and m ൌ 3 (a

l velocity Hሺη
) and s ൌ 2 (a
0.5 (solid-box
e). ሺcሻ Effect 
asterisk) in co

A combina

                        

ty Gሺηሻ. ሺaሻ E
ൌ 2 (asterisk

olid-box), m ൌ
ሺcሻ Effect of

asterisk) in co

ηሻ. ሺaሻ Effect
asterisk) in co
x), m ൌ 1 (circ

of m, s ൌ െ1
omparison to t

ation of pseudo

                  IJS

Effect of s, m
k) in comparis
ൌ 1 (circle), m
f m, s ൌ െ1, 
omparison to t

t of s, m ൌ 0
mparison to t
cle), m ൌ 2 (s
1, for m ൌ 0 (
the numerical 

o-spectral metho
 

ST, Transaction

m ൌ 0.5, for s
son to the num
m ൌ 2 (solid-
for m ൌ 0 (b

the numerical 

.5, for s ൌ െ
the numerical 
solid-circle) an
(box), m ൌ 0.
solution (line

od and extrapo

ns of Mechanic

s ൌ െ2 (box)
merical solutio
-circle) and m
box), m ൌ 0.5
solution (line

2 (box), s ൌ
solution (line

nd m ൌ 3 (ast
.5 (solid-box)

e)   

olation… 

al Engineering

 
), s ൌ െ1 (so
on (line). ሺbሻ 
m ൌ 3 (asteris
5 (solid-box),
) 

െ1 (solid-box
e). ሺbሻ Effect 
terisk) in comp
, m ൌ 1 (circl

g, Volume 38, N

 

olid-box), s ൌ
 Effect of m,

sk) in compar
, m ൌ 1 (circ

x), s ൌ 0 (cir
of m, s ൌ 1, 

mparison to the
le), m ൌ 2 (so

Number M1   

35

0 (circle), 
s ൌ 1, for 

rison to the 
le), m ൌ 2 

 
cle), s ൌ 1 
for m ൌ 0 

e numerical 
olid-circle) 



IJST, Transac

36

Figure 4 Co

Tables 
factor ܮ ൌ
Here, by usi
 

Table 1. Co

ܨ ݏ

െ2.0 0.2

െ1.0 0.3
0.0 0.3

1.0 0.2

2.0 0.1

Table 2. C

s	 F

െ2.0	 0.

െ1.0	 0.
0.0	 0.

1.0	 0.

2.0	 0.
 

For som
presented m
Turkyilmaz
between th
5.00 ൈ 10ି
 

Table 3. C

m	 F

0	 0.5

1	 0.3

4	 0.1

25	 0.0

100	 0.0
 

ctions of Mech

ontinued. 

 1 and 2 giv
3) and the r
ing (75) we c

omparison of 

 [37]		ᇱሺ0ሻܨ

29148086 

32166220 

30925798 

25104397 

18871903 

omparison of 

Fᇱሺ0ሻሾ37ሿ	

17398900	

17467999	
16570305	

14901611	

12943847	

me chosen v
method (PM

zoglu [36]. I
he presented 
ଽ% and 1.54

Comparison of

Fᇱሺ0ሻሾ37ሿ	

51023262	

30925798	

16570305	

06665659	

03333302	

anical Enginee

ve a compar
results repor
can obtain th

f the analytic s

 ሺ0ሻ(PM)′ܨ

0.291480863

0.321662216
0.309257980

0.251043972

0.188719024

f the analytic s

F′ሺ0ሻሺPMሻ

0.17398900

0.17467999
0.16570304

0.149016114

0.12943847

values of ma
M) (with ܰ
It is seen fro

method an
4 ൈ 10ିହ%, 

f the analytic s

F′ሺ0ሻሺPMሻ

0.510232612

0.309257981

0.165703048

0.066656598

0.033333017

M.

ering, Volume 3

rison betwee
rted by Turk
he positive sc

olution of Tur

ᇱሺ0ሻܩ

31 െ0.4657

68 െ0.6906
02 െ1.0690

20 െ1.6570

45 െ2.4313

solution of Tur

ሻ	 Gᇱሺ0ሻ

31	 െ1.247

01	 െ1.573
83	 െ2.010

40	 െ2.569

07	 െ3.241

gnetic streng
ܰ ൌ 30 and 

om Tables 1
nd the analy
respectively

solution of Tu

Gᇱሺ0ሻ

27	 െ0.6159

16	 െ1.0690

83	 െ2.0102

80	 െ5.0006

72	 െ10.000

M. Heydari et al.
 

38, Number M

 
en the presen
kyilmazoglu
caling factor 

rkyilmazoglu 

[37] G

71471 െ0.

66292 െ0.
05336 െ1.

07588 െ1.

36154 െ2.
 

rkyilmazoglu 

ሾ37ሿ G

15517 െ1.

12231 െ1.
26672 െ2.

32504 െ2.

33921 െ3.

gth paramete
scaling fac

1-3 that the 
ytic solution
y.   

urkyilmazoglu

ሾ37ሿ G

92201 െ0.6

05336 െ1.0

26672 െ2.0

66641 െ5.0

00833 െ10

. 

M1                      

nted method
u [37] for se
c in Ariel’s 

[37] and the p

G′ሺ0ሻሺPMሻ

4657148441

6906628842
0690533599

6570758005

4313615383

[37] and the p

G′ሺ0ሻሺPMሻ

2471551657

5731223150
0102667198

5693250446

2413392135

er m, Table 3
ctor ܮ ൌ 3.5
maximum p

n of Turkyil

u [37] and the 

G′ሺ0ሻሺPMሻ

6159220219

0690533552

0102667204

0006664150

0.000083336

                        

 

d (PM) (with
everal suctio
series solutio

present numer

c ሾ37ሿ	

1 0.616117

2 0.807198
9 1.134646

5 1.683730

3 2.441381

present numer

c ሾ37ሿ	

7 1.267010

0 1.588287
8 2.020491

6 2.575568

5 3.244978

3 gives a com
5) and the 
percentage o
lmazoglu [37

present nume

c ሾ37ሿ	

0.8844741

1.1346462

2.0204915

5.0013327

10.000166

                        

h ܰ ൌ 30 an
on/injection v
on. 

rical results fo

c	ሺP

759	 0.6161

879	 0.8071
624	 1.1346

044	 1.6837

137	 2.4413

rical results fo

c	ሺP

84	 1.26701

47	 1.58828
60	 2.02049

08	 2.57556

51	 3.24497

mparison be
results rep

of the absolu
7] is 1.34 ൈ

erical results fo

c	ሺP

11	 0.88447

24	 1.13464

59	 2.02049

76	 5.00133

67	 10.0001

 April 2014 

nd scaling 
velocities. 

or ݉ ൌ 1 
PMሻ

175910

987873
462388

304442

813727

or m ൌ 4 

PMሻ

108401

874718
915967

680776

785121

etween the 
ported by 
ute errors 
ൈ 10ିହ%, 

for s ൌ 0 

Mሻ

742638

462391

915968

327589

166662



A combination of pseudo-spectral method and extrapolation… 
 

April 2014                                                                       IJST, Transactions of Mechanical Engineering, Volume 38, Number M1   

37

In Tables 4 through 6, the values of ܨ′ሺ0ሻ, െܩ′ሺ0ሻ and െܪሺ∞ሻ are presented for various m using 
Ariel’s series solution (Section 3 [36]), perturbation solution for small m (Section 4 [36]), asymptotic 
solution for large m (Section 5 [36]), approximate solution for all m (Section 6 [36]) and the presented 
method with ݏ ൌ 0,ܰ ൌ 25 and scaling factor ܮ ൌ 2.5. It is observed from Tables 4-6 that the maximum 
percentage of the absolute errors between the presented method and the Ariel’s series solution [36] is 
4.93 ൈ 10ିହ%, 5.44 ൈ 10ିହ% and 4.89 ൈ 10ିଶ%, and these absolute errors between the presented 
method and the approximate solution [36] are 1.39%, 2.19% and 4.96%, respectively.   
 

Table 4. Variation of ܨ′ሺ0ሻ with magnetic parameter m for s ൌ 0 

݉  Ariel [36] Perturbation [36] Asymptotic[36] Approximate [36] Presented method 
0 0.510233 0.510233 െെെെ 0.524131 0.5102325341 
0.2 0.453141 0.453073 െെെെ 0.459835 0.4531409669 

0.4 0.405576 0.405383 െെെെ 0.408736 0.4055757617 
0.6 0.366698 0.367162 0.423279 0.368217 0.3666980939 
0.8 0.335090 0.338411 0.346685 0.335851 0.3350897646 

1.0 0.309258 0.319129 0.312477 0.309660 0.3092580035 
1.2 0.287915 0.309316 0.289011 0.288239 0.2879153403 
1.4 0.270049 0.308973 0.270481 0.270180 0.2700489432 

1.6 0.254892 0.318099 0.255083 0.254973 0.2548923744 
1.8 0.241872 0.336694 0.241964 0.241924 0.2418723429 
2 0.230559 0.364759 0.230607 0.230593 0.2305591120 

3 0.190503 െെെെ 0.190509 0.190509 0.1905026514 
5 0.148516 െെെെ 0.148516 0.148516 0.1485155063 
10 0.105310 െെെെ 0.105310 0.105310 0.1053100366 

20	 0.074518 െെെെ 0.074518 0.074518 0.0745180154 
50	 0.047139 െെെെ 0.047139 0.047139 0.0471386715 
100	 0.033333 െെെെ 0.033333 0.033333 0.0333330212 

 
 Table 5. Variation of െܩ′ሺ0ሻ with magnetic parameter m for s ൌ 0     

݉  Ariel [36] Perturbation [36] Asymptotic[36] Approximate [36] Presented method 
0 0.615922 0.615922 െെെെ 0.594064 0.6159219339 
0.2 0.708795 0.709168 െെെെ 0.695608 0.7087951858 
0.4 0.802376 0.805456 െെെെ 0.794648 0.8023761044 
0.6 0.894476 0.904786 0.968507 0.889942 0.8944754840 
0.8 0.983607 1.007159 0.995093 0.980887 0.9836069093 
1.0 1.069053 1.112574 1.071620 1.067367 1.0690532935 
1.2 1.150635 1.221031 1.151366 1.149551 1.1506349654 
1.4 1.228466 1.332531 1.228714 1.227744 1.2284662495 
1.6 1.302793 1.447073 1.302889 1.302296 1.3027935436 
1.8 1.373906 1.564657 1.373947 1.373554 1.3739064040 
2 1.442094 1.685284 1.442113 1.441837 1.4420940452 
3 1.747686 െെെെ 1.747686 1.747615 1.7476854843 
5 2.243452 െെെെ 2.243452 2.243440 2.2434522726 
10 3.164907 െെെെ 3.164907 3.164906 3.1649066944 
20	 4.473067 െെെെ 4.473067 4.473067 4.4730670993 
50	 7.071303 െെെെ 7.071303 7.071303 7.0713034924 
100	 10.000083 െെെെ 10.000083 10.000083 10.000083337 

 
The approximations of the െܪሺ∞ሻ obtained by Kumar et. al [35], asymptotic formula in [35] and the 

presented method with ܰ ൌ 25 and scaling factor ܮ ൌ 9 for some chosen values of Prandtl number (Pr) 
and magnetic interaction number m are listed in Table 7. From Table 7, we see that the asymptotic 
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formula does not have as much accuracy with injection values as it does for suction. It is shown from 
Table 7 that the maximum percentage of the absolute errors between the presented method and the 
obtained results in Kumar et. al [35] is 1.54 ൈ 10ିଵ%. 

 

Table 6. Variation of െܪሺ∞ሻ with magnetic parameter m for s ൌ 0 

m Ariel [36] Perturbation [36] Asymptotic[36] Approximate [36] Presented method 

0	 0.884474	 0.884474	 െ െ െ െ 0.835403 0.8849633172

0.2	 0.683476	 0.680910	 െ െ െ െ 0.638026 0.6834764318

0.4	 0.523397	 0.507392	 െ െ െ െ 0.489717 0.5233975704
0.6	 0.403646	 0.363923	 െ െ െ െ 0.380936 0.4036456939

0.8	 0.316535	 0.250500	 0.407199 0.301682 0.3165350930
1.0	 0.253314	 0.167125	 0.273811 0.243576 0.2533142668

1.2	 0.206874	 0.113797	 0.212757 0.200374 0.2068742244

1.4	 0.172129	 0.090517	 0.174134 0.167684 0.1721286727
1.6	 0.145605	 െ െ െെ	 0.146384 0.142487 0.1456047656

1.8	 0.124955	 െ െ െെ	 0.125291 0.122714 0.1249554850
2	 0.108584	 െ െ െെ	 0.108740 0.106936 0.1085838042

3	 0.061765	 െ െ െെ	 0.061773 0.061299 0.0617654083
5	 0.029402	 െ െ െെ	 0.029402 0.029317 0.0294016556

10	 0.010504	 െ െ െെ	 0.010504 0.010496 0.0105039221

20	 0.003723	 െ െ െെ	 0.003723 0.003723 0.0037234972
50	 0.000943	 െ െ െെ	 0.000943 0.000943 0.0009426760

100	 0.000333	 െ െ െെ	 0.000333 0.000333 0.0003333216
 

Table 7. The comparison of െܪሺ∞ሻ for presented method, asymptotic formula and obtained  
results in Kumar et. al [35] 

  

 

 Asymptotic formula [35] Kumar et. al [35] Presented method ݉ ݏ
3 1 3.3333 3.0131 3.0131401 
3 2 3.1178 3.0102 3.0101920 

3 4 3.0417 3.0069 3.0069199 
2 1 2.3333 2.0318 2.0317772 

2 2 2.1178 2.0213 2.0212868 
2 4 2.0417 2.0123 2.0123047 

1 1 1.3333 1.0898 1.0898111 

1 2 1.1178 1.0481 1.0481266 
1 4 1.0417 1.0225 1.0225126 

0 1 0.33333 0.25331 0.2533143 
0 2 0.11785 0.10858 0.1085838 

0 4 0.04172 0.04078 0.0407754 
െ1 1 െ0.6667 െ0.43166 െ0.4316534 

െ1 2 െ0.8822 െ0.78157 െ0.7815625 

െ1 4 െ0.9583 െ0.93015 െ0.9301483 
െ2 1 െ1.6667 െ1.0070 െ1.0069492 

െ2 2 െ1.8822 െ1.6265 െ1.6264850 
െ2 4 െ1.9583 െ1.8900 െ1.8900261 

െ3 1 െ2.6667 െ1.5417 െ1.5416593 

െ3 2 െ2.8822 െ2.4462 െ2.4436581 
െ3 4 െ2.9583 െ2.8415 െ2.8412273 
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In Table 8, ܨ௠௔௫ is presented for various magnetic parameter m with ݏ ൌ 0 using Ariel’s series solution 
(Section 3 [36]), the approximate solution (Section 6 [36]), Watanabe and Oyama solution [48] and the 
presented method with ܰ ൌ 30 and scaling factor ܮ ൌ 3.5. It is seen from this table that the maximum 
percentage of the absolute errors between the presented method, Ariel’s series solution [36] and the 
approximate solution [36] is 4.94 ൈ 10ିହ% and 1.53 ൈ 10ିଵ%, respectively.   
 

Table 8. Variation of ܨ௠௔௫ with magnetic parameter m for s ൌ 0     

݉ Ariel [36] Approximate [36] Watanabe and Oyama [48] Presented method 

0 0.180767 0.165428 0.180000 0.1807671663 

0.2 0.146361 0.135413 0.147925 0.1463606999 

0.4 0.119254 0.111850 0.121887 0.1192540268 

0.6 0.098537 0.093631 0.100841 0.0985367532 

0.8 0.082842 0.079577 0.083943 0.0828418247 

1 0.070873 0.068659 0.070514 0.0708725057 

1.2 0.061608 0.060071 0.060015 0.0616084645 

1.4 0.054309 0.053212 0.052025 0.0543094459 

1.6 0.048454 0.047651 0.046224 0.0484540426 

1.8 0.043676 0.043075 0.042378 0.0436763960 

20 0.039718 0.039258 0.040333 0.0397175633 

2.5 0.032303 0.032048 0.042732 0.0323025502 

3 0.027170 0.027016 0.056676 0.0271702757 

4 0.020572 0.020504 0.137292 0.0205722221 

5 0.016532 0.016496 0.369746 0.0165317959 

6 0.013810 0.013790 1.006518 0.0138104608 

7 0.011855 0.011842 2.739247 0.0118552280 

8 0.010383 0.010375 7.449955 0.0103834194 

9 0.009236 0.009230 20.255232 0.0092358780 

10 0.008316 0.008312 55.063673 0.0083162724 
 

    
For the tangential direction, define the displacement thickness ߜௗ௜௦ as:  
 

ௗ௜௦ߜ ൌ ׬ 	
ஶ
଴  (76)                                                            ߟሻ݀ߟሺܩ

 
The momentum thickness for the flow about a rotating disk as defined by Stuart [49] is:  

 
௠௢௠ߜ ൌ ׬ 	

ஶ
଴ ሻሺ1ߟሺܩ െ  (77)                                                   ߟሻሻ݀ߟሺܩ

 
Table 9 shows the values of displacement thickness ߜௗ௜௦ and momentum thickness ߜ௠௢௠ obtained by 

Kumar et. al [35] and presented method with ܰ ൌ 25 and scaling factor ܮ ൌ 9 for some chosen values of s 
and m. Equations (76) and (77) include the numerous integrals. It is recommended to use the numerical 

integration rules such as Gauss Laguerre rule. The displacement thickness increases for decreased suction 

and decreases for decreased injection. For all values of injection, displacement thickness increases 

significantly with decreased m. The displacement thickness is slightly affected by increasing m when the 

suction value is larger, whereas the displacement thickness changes greatly with increases in m when the 

suction values become small. Similar trends are observed for momentum thickness.  
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 Table 9. Effect of s and magnetic number m on displacement thickness ߜௗ௜௦ and momentum thickness ߜ௠௢௠ 

 
 ݏ

 
݉ 

 ௠௢௠ߜ ௗ௜௦ߜ
Kumar et. al [35] Presented method Kumar et. al [35] Presented method 

2 0.1 0.47727 0.477268 0.23830 0.238298 

2 0.5 0.44289 0.442893 0.22123 0.221229 

2 1 0.41017 0.410166 0.20494 0.204942 
2 2 0.36407 0.364075 0.18197 0.181966 

2 4 0.30828 0.308284 0.15411 0.154113 
1 0.1 0.78192 0.781922 0.38723 0.387225 

1 0.5 0.68282 0.682821 0.33973 0.339725 
1 1 0.59708 0.597084 0.29775 0.297749 

1 2 0.49318 0.493181 0.24631 0.246311 

1 4 0.38858 0.388578 0.19421 0.194210 
0 0.1 1.2363 1.236254 0.58847 0.588466 

0 0.5 1.0755 1.075465 0.52567 0.525667 
0 1 0.89896 0.898964 0.44505 0.445046 

0 2 0.68477 0.684770 0.34131 0.341311 

0 4 0.49577 0.495767 0.24767 0.247674 
െ1 0.1 1.7252 1.725218 0.76046 0.760460 

െ1 0.5 1.5623 1.562257 0.73459 0.734551 
െ1 1 1.3048 1.304834 0.63569 0.635694 

െ1 2 0.94240 0.942396 0.46784 0.467836 
െ1 4 0.63162 0.631625 0.31531 0.315308 

െ2 0.1 2.2707 2.270674 0.91238 0.912377 

െ2 0.5 2.1129 2.112930 0.94692 0.946928 
െ2 1 1.7822 1.782588 0.85028 0.850624 

െ2 2 1.2534 1.253626 0.61869 0.618641 
െ2 4 0.79339 0.793426 0.39564 0.395670 

 
For some selected values of Prandtl number (Pr) and s, Table 10 gives a comparison between the 

presented method with ܰ ൌ 30 and the results reported by Kumar et. al [35] for magnetic interaction 

number ݉ ൌ 0.5. It can be seen that the Nusselt number increases as suction increases but decreases as 

injection increases. This is due to the fact that increasing suction parameter lead to a thinner boundary 

layer thickness on the disk as was shown in Fig 2-a, which in turn results in an increase in heat transfer 

coefficient, Nu. For a given value of s, Nusselt number increases as Prandtl number increases. Similarly, 

for some values of magnetic interaction number m and Prandtl number (Pr). Table 11 gives a comparison 

between the presented method with ܰ ൌ 30 and the results reported by Kumar et. al [35] for uniform 

suction parameter ݏ ൌ 1. Here, we can see that the Nusselt number increases as magnetic number 

decreases. Decreasing magnetic number m leads to more incoming cold flow velocities (െܪሺߟሻ) towards 

the rotating disk (See Figs 4b and 4c) and hence elevates the heat transfer rates. Furthermore, for a given 

m, Nusselt number increases as Prandtl number increases. It is observed from Tables 10 and 11 that the 

maximum percentage of the absolute errors between the presented method and the results obtained by 

Kumar et al. [35] is 1.50 ൈ 10ିସ% and 6.00 ൈ 10ିଷ%, respectively. 

Figure 5 shows the logarithmic of absolute values of Chebyshev coefficients as computed for several 

scaling factor ܮ. The optimum L for ܰ ൌ 30 is about ܮ ൌ 8, but is smaller for smaller N: note that the 

curves for small L are well below those of the solid circles for ܮ ൌ 8.  

 



April 2014      

 

 
 ݎܲ\ݏ

4 

3 
2 

1 

0 
െ1 

 

 
 ݎܲ\݉

0 
0.5 

1 

2 
3 

4 
 

Fig. 5. The l
Th

                        

Table 10. Eff

K
0.1 

0.4006091 

0.3013329 
0.2036261 

0.1126061 

0.0428310 
0.0031799 

 Table 11. Ef

0.1 
0.1225589 
0.1126061 

0.1081711 

0.1044617 
0.1029297 

0.1021232 

logarithmic of
e solid circles

A combina

                        

fect of Prandtl 

Kumar et. al [
1.0 

4.002395 

3.005322 
2.015051 

1.059119 

0.2826559
0.0034330

ffect of m and 

Kumar et. al [
1.0 

1.0925388
1.0591194
1.0418339
1.0254037
1.0177857
1.0134742

f absolute valu
s show the bes

ation of pseudo

                  IJS

number (Pr) a

[35] 
10.0

40.0011
30.0025
20.0077
10.0399

 0.951536
 െെെെ

Prandtl numb

[35] 
10.0

 10.05451
4 10.03991

 10.03181
 10.02316
 10.01852
 10.01556

ues of Chebys
st choice for ܰ

o-spectral metho
 

ST, Transaction

and s on Nuss

0.1ሺܮ ൌ
2 0.400
5 0.301
70 0.203
91 0.112
66 0.042
െ 0.003

ber (Pr) on Nu

0.1ሺܮ ൌ
18 0.122
11 0.112
11 0.108
68 0.104
25 0.102
65 0.102

 

   
shev coefficien
ܰ ൌ 30, which

od and extrapo

ns of Mechanic

selt number ܰ

Pr
ൌ 7.304ሻ 1
06091 

13329 
36261 

26066 

28302 
31794 

usselt number 

Pr
ൌ 7.600ሻ 1
25594 
26067 

81716 

44619 
29298 

21232 

nts ሚ݂௝, ෤݃௝, ෨݄௝ a
h is ܮ ൌ 8 wh

olation… 

al Engineering

ݑܰ ൌ െ߆′ሺ0ሻ f

resented metho
1.0ሺܮ ൌ 9.200
4.0023950 

3.0053220 
2.0150512 

1.0591194 

0.2826559 
0.0034329 

ݑܰ ൌ െ߆′ሺ0

resented metho
1.0ሺܮ ൌ 7.600
1.0925388 
1.0591194 

1.0418339 

1.0254037 
1.0177857 

1.0134742 

nd ߠ෨௝ versus j
en ݉ ൌ 1, ݏ ൌ

g, Volume 38, N

for ݉ ൌ 0.5 

od 
0ሻ 10.0ሺܮ ൌ
 40.00
 30.00
 20.00
 10.039
 0.951
 െെ

0ሻ for ݏ ൌ 1 

od 
0ሻ 10.0ሺܮ ൌ

10.054
10.039
10.031
10.023
10.018
10.015

 

 
j for seven val
ൌ 2 and Prൌ 2

Number M1   

41

ൌ 1.500ሻ
11209 

25492 
76992 

99115 

15363 
െെ 

ൌ 1.500ሻ
45181 
99115 

18114 

31684 
85246 

55645 

lues of   L. 
2 



M. Heydari et al. 
 

IJST, Transactions of Mechanical Engineering, Volume 38, Number M1                                                                       April 2014 

42

6. CONCLUSION 
 
The aim of the this study is to develop an efficient and accurate numerical method based on pseudo-
spectral collocation method and extrapolation for finding the approximate solutions of the system of 
nonlinear ordinary differential equations derived from similarity transform for the MHD flow about a 
rotating disk subject to a uniform suction and injection with heat transfer. The difficulty in this type of 
equation, due to the existence of its boundary condition in the infinity, is overcome here. Indeed, the 
method presented in this paper used a set of Chebyshev polynomials and solved this problem on the semi-
infinite domain without truncating it to a finite domain. The comparisons are also made between the 
results of the presented method and other methods. It is found that the results of the present works agree 
well with other methods. The validity of this method is based on the assumption that it converges by 
increasing the number of collocation points. The present success of the proposed method for the nonlinear 
problem of MHD flow about a rotating disk subject to a uniform suction and injection verifies that the 
method is a useful tool for the solution of nonlinear problems in fluid mechanics. 
 
Acknowledgements: The authors are very grateful to one of the referees for carefully reading this paper 
and for the comments and suggestions which have improved the paper.  
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