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Abstract– In the present study fractal geometry is used to model frost growth around a cooled 
horizontal circular cylinder having constant surface temperature. Fractal geometries are very 
applicable in this area because phase changes such as melting and solidifications are simulated by 
conventional methods but frost formation is a most complicated coupled heat and mass transfer 
and conventional mathematical functions cannot capture the effects of all parameters on its growth 
and development because this process is influenced by many factors and it is a time dependent 
process. Data for fractal analysis and modeling are collected from the experimental measurements. 
In the present work a fractal geometry based on the Von Koch curve idea is used to model frost 
growth procedure, especially in frost thickness and density. Comparison is performed between 
fractal modeling and experimental measurements. Results show that fractal geometry is capable to 
model frost formation process over a cold horizontal cylinder. According to the obtained results 
and based on the developed model frost formation over cylinders with different diameters are 
modeled.           
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1. INTRODUCTION 
 
Frost formation on cylinders is of considerable practical interest in the efficient design of heat pumps and 
refrigerators. There is a growing demand for a better understanding of frost phenomenon in applications 
such as heat exchangers, air cooling for air conditioning system, etc.  

Phase changes such as melting and solidification are simulated by conventional methods [1], but frost 
formation is a complicated coupled heat and mass transfer and conventional mathematical functions 
cannot capture the effects of all parameters on its growth and development because this process is 
influenced by many factors and it is a time dependent process.   

To prevail over these difficulties and for further detailed analysis, new approaches and methods such 
as fractal geometry, artificial neural networks, etc. can be used. These approaches reduced the cost of 
studies and saving computational time. As mentioned, fractal geometry can be an alternative and a new 
attempt in this area. Fractals are an integral part of the natural world since most of the naturally formed 
geometries are fractals. For example clouds, coastlines, lightning, snow flakes, cauliflower and even the 
system of our blood vessels are all fractal in nature [2–5]. In fact, anything which is fragmented or 
irregular can be a fractal. Fractals are irregular and they cannot be described by Euclidean geometries. 

They are also characterized by self-similarity which essentially means that each part of the geometry 
is a reduced scale image of the whole [2]. Even when the geometry is not identical at all the magnification 
levels, it can be fractal if there is any property of the geometry that repeats itself as it is magnified. This 
type of self-similarity is called statistical self-similarity [6]. 
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The theory of fractals aids in analyzing the response of practical systems besides examining the 
complex geometries of nature. Fractal theory has a wide variety of applications ranging from economy [7], 
environmental sciences [8], mathematics [9, 10], neurology [11, 12] and thermal sciences [13, 14]. 
Fractals have been used by various researchers for modeling and predictions in the field of engineering 
systems such as crack growth, fracture, roughness, and technological devices, etc. Also, fractals are used 
to analyze frost, crystals, and material structures [15-18]. But from a review of the literature, it can be 
observed that fractals have rarely been employed for modeling frost formation procedure. 

In the present work, fractals are employed to model frost formation over a cold horizontal cylinder 
under natural convection and comparison is made with experimental results. Measurements of Chen and 
Oosthuizen [19], Yaghoubi and Khoshnazar [20], and Tahavvor and Yaghoubi [21, 22] are used to 
generate the database for fractals, and new results of frost growth over horizontal cylinder are developed. 
 

2. ACCUMULATED DATA 
 
For modeling frost growth, fractal geometry has been designed according to the experimental results of 
Tahavvor and Yaghoubi [21, 22], Chen and Oosthuizen [19], and Yaghoubi and Khoshnazar [20]. In all 
experiments, results were obtained with varying environmental condition and cylinder surface 
temperature. In Ref. [19] two tube diameters are used and in other works only one tube diameter was used. 
The experiments condition of Ref. [19] for pipes of large diameter and small diameter are listed in Table 
1. Tables 2 and 3 show the test conditions of experiments of Ref. [20] and Ref. [21], respectively. 
 

Table 1. Experimental data of [3] 

Cylinder diameter = 22.4 cm 
Test Number  Tw (ºC)   Ta (ºC)   RH (%) 
I   -2.66   21.28   47.20 
II   -11.75   25.28   48.18 
III   -6.54   25.71   49.01 
IV   -2.58   24.96   53.00 
V   -6.67   25.81   55.89 
VI   -3.38   26.53   53.00 
Cylinder diameter = 15.8 cm 
Test Number  Tw (ºC)   Ta (ºC)   RH (%) 
VII   -6.18   28.90   47.90 
VIII   -8.39   28.19   42.60 
IX   -5.96   29.13   50.10 
X   -2.51   30.34   54.60 
XI   -5.19   30.34   51.10 

 
Table 2. Experimental data of [4] 

Cylinder diameter = 8.00 cm 
Test Number  Tw (ºC)   Ta (ºC)   ω (kg kgDA-1) 
XII   -4.00   18.00   0.0064 
XIII   -8.00   22.00   0.0089 

 
Table 3. Experimental data of [5] 

Cylinder diameter = 7.7 cm 
Test Number  Tw (ºC)   Ta (ºC)   RH (%) 
1    -5.21    30.0    30.0 
2    -4.50    30.0    50.0 
3    -7.34    30.0    37.0 
4    -9.30    25.0    37.0 
5    -10.07   20.0    37.0 
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3. FRACTALS 
 
Fractal is a mathematical set that has a fractal dimension that usually exceeds its topological 
dimension and may fall between the integers. Fractals are typically self-similar patterns, where self-similar 
means they are "the same from near as from far". Fractals may be exactly the same at every scale, or may 
be nearly the same at different scales. The definition of fractal goes beyond self-similarity to exclude 
trivial self-similarity and include the idea of a detailed pattern repeating itself. 
The mathematics behind fractals began to take shape in the 17th century but one of the milestones came in 
1904 when Helge Von Koch, extending the ideas of Poincaré and dissatisfied with Weierstrass's abstract 
and analytic definition, gave a more geometric definition including hand drawn images of a similar 
function, which is now called the Von Koch curve. 

Finally, Mandelbrot solidified hundreds of years of thought and mathematical development in coining 
the word "fractal" and illustrated his mathematical definition with striking computer-constructed 
visualizations [23, 24]. The Von Koch fractal curves and islands are perhaps the most beautiful fractals, as 
illustrated in Fig 1. 
 
a) Fractal geometry 
 

Hayashi et al. [25] and Tao et al. [26, 27] observed that frost formation under forced convection 
condition consists of two periods. During the first period frost can be simulated as a forest of ice columns 
until a transition time, after which the frost may be considered as a homogenous porous medium, as 
schematically illustrated in Fig. 2 appears to have been taken from R.O. Piucco et al. [28]. 

 
Fig. 1. Von Koch fractal (a) curves and (b) islands [8] 

 

 
Fig. 2. Frost growth procedure [9] 

 

Surrounding air 
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Also, same stages are observed and modeled by Tahavvor and Yaghoubi under natural convection 
condition [22]. According to these observations and also according to von Koch fractal curve idea, the 
segment shown in Fig. 3a is used as an initial segment of frost crystal. The dimensions of fractal segments 
(showed in Fig. 3a) vary with time. This variation can be considered as a function of time and ambient 
temperature. Frost models suggest that cold surface temperature has no appreciable effect on initial fractal 
segment dimensions. The relationships between fractal segment dimensions, time, cold surface 
temperature, and relative humidity are determined as follows: 
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 Where C is determined from the following relation: 
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Values of coefficients of Eqs. (1-3) and 5 are listed in Table 4.  
 

 
Fig. 3. Fractal segment after (a) one step (initial segment), (b)after two step, (c)after three step, 

 (d) after four step, and (e) after five step 
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Table 4. Coefficients of Eqs. (1), (2), and (3) 

 Equation (1)  Equation (2)  Equation (3)  Ca        Cb 
p00 203.8   192.6   -    - 
p10 49.26   36.33   -    - 
p01 0.1313   -0.1342   7.853   2.014       2.342 
p20 2.922   2.082   -    - 
p11 -0.127   -0.04128  -    - 
p02 -0.001   0.00013   96.91   -10.314     -13.694 
p21 -0.01013  -0.004213  -    - 
p12 7.319e-5  -7.816e-6  -    - 
p03 1.233e-6  -2.778e-7  795.2    - 
p22 7.338e-6  3.587e-6  -    - 
p13 6.677e-9  3.784e-8  -    - 
p04 -4.601e-10  2.604e-10  -    - 

 
In modeling process each edge of segment stands as a base of a new segment. This process is then 

repeated. Figures 3b through 3e represent the fractal after two through five iterations respectively. 
Increasing the iteration number provides more detailed drawings; so, the length of the Von Koch curve 
increases at each step. In each step, the segments are divided and the number of segments is multiplied 
by four, hence length and height increase in each step. 
 

4. RESULTS AND DISCUSSIONS 
 
Fractal geometry is used to model frost thickness and density around a cooled horizontal cylinder under 
natural convection. Results for certain cases were compared with experimental data. The problem of frost 
formation on cold circular cylinder in natural convection condition is chosen to show the feasibility of the 
fractals to determine frost thickness and density for various conditions and provide new results for 
different conditions.  

The results from experiments and modeling for RH = 37%, Tw = -8.51 °C, and Ta = 30 °C are used 
for validating the accuracy of the model. Results are compared in Fig. 4a and 4b. Very good agreement 
can be observed between results of fractals and experiments.  
 

 
Fig. 4. Results of prediction of frost thickness and density for RH=37%, Tw=-8.51 °C, and Ta=30 °C 
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This model was also used to simulate frost formation under various conditions. Results of these tests 
are presented in Figs. 5 to 7. From these figures it is evident that fractal modeling is capable of accurately 
determining frost thickness and density from the input data. 

 
Fig. 5. Results of prediction of frost thickness for RH=50%, Tw=-4.5 °C, and Ta=30 °C  

 

  
Fig. 6. Results of prediction of frost thickness for RH=30%, Tw=-5.21 °C, and Ta=30 °C 

 
Fig. 7. Results of prediction of frost density for RH=30%, Tw=-5.21 °C, and Ta=30 °C 



Modeling of frost growth on a horizontal cylinder… 
 

April 2014                                                                       IJST, Transactions of Mechanical Engineering, Volume 38, Number M1   

7

5. CONCLUSION 
 
Fractal modeling is compared with experimental results for study of frost formation around a cold 
horizontal circular cylinder under natural convection for various cases. 

 Von Koch fractal curves are capable of modeling frost growth. 
 Very good agreement was found between fractals scheme and experimental results. 
 Fractal method can easily be used to determine new results for frost thickness and frost density 

over a horizontal cylinder in natural convection cooling with considerably less computational cost 
and time. 

 Relative errors of fractal modeling relative to experimental measurements are less than 4% for 
frost density and 5% for frost thickness. 

Several modelings show that cold surface temperature has no considerable effect on initial fractal segment 
dimensions.  
 

NOMENCLATURE 
 

a  large fractal segment base  
b  small fractal segment base 
h  fractal segment height  
L  fractal site length 
RH   relative humidity 
t  time 
T  temperature 

Subscript 

a  ambient 
w  wall 
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