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Abstract

Recently, Mohiuddine and Alghamdi introduced the notion of lacunary statistical convergence in a locally solid
Riesz space and established some results related to this concept. In this paper, some inclusion relations between
the sets of statistically convergent and lacunary statistically convergent sequences are established and extensions
of a decomposition theorem, a Tauberian theorem to the locally solid Riesz space setting are proved. Further, we
introduce the concepts of #-summable and statistically lacunary convergence in locally solid Riesz space and

establish arelationship between them.
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1. Introduction

Actually the idea of statistical convergence was
previously given under the name "amost
convergence' by Zygmund in the first edition of his
celebrated monograph published in Warsaw in 1935
(Zygmund, 1979). The concept was formally
introduced by Fast (1951) and Steinhaus (1951) and
later on reintroduced by Schoenberg (1959), and
aso independently by Buck (1953). Over the years
and under different names statistical convergence
has been discussed in the theory of Fourier analysis,
ergodic theory and number theory. Later it was
further investigated from various points of view,
see (Belen and Mohiuddine, 2013; Cakalli and
Khan, 2011; Colak and Bektas, 2011; Fridy, 1985;
Mohiuddine et a., 2013; Mursdeen and
Mohiuddine, 2009; Mursaleen and Mohiuddine,
2010; Mursaleen and Mohiuddine, 2012; Salét,
1980; Prullage, 1967). This notion has also been
defined and studied in different setups, for example,
in topological groups (Cakali, 1996; Cakalli,
2009), topological spaces (Di Maio and Kocinac,
2008), function spaces (Caserta and Kocinac, 2012;
Caserta et al., 2011), localy convex spaces
(Maddox, 1988), intuitionistic fuzzy normed space
(Mohiuddine and Lohani, 2009). Fridy and Orhan,
(1993) introduced the concept of lacunary statistical
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convergence. In (Mursdeen and Mohiuddine,
2009), Mursaleen and Mohiuddine introduced the
concept of lacunary statistical convergence with
respect to the intuitionistic fuzzy normed space. For
details related to these concepts, we refer to
(Cakalli, 1995; Cakan et a., 2010; Gurdal and
Acik, 2008; Hazarika and Mohiuddine, 2013; Li,
2000; Mohiuddine and Aiyub, 2012; Mohiuddine et
al., 2012; Mohiuddine et al., 2010; Mohiuddine et
al., 2012; Mohiuddine and Alotaibi, 2011;
Mursaleen et a., 2010; Mursaleen and Edely, 2003;
Mursaleen et a., 2010; Savas and Mohiuddine,
2012).

A Riesz space is an ordered vector space which is
alattice at the same time. It was first introduced by
Riesz (1928). Riesz spaces have many applications
in measure theory, operator theory and
optimization. They also have some applications in
economics (Aliprantis and Burkinshaw, 2003), and
we refer to (Albayrak and Pehlivan, 2012;
Kantorovich, 1937; Luxemburg and Zaanen, 1971;
Mohiuddine et al. 2012; Zannen, 1997) for more
details.

2. Background, notationsand preliminaries

In this section, we recall some of the basic concepts
related to the notions of statistical convergence and
lacunary sequence.

Let E € N. Then the natural density of E is
denoted by §(E) and is defined by
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1
6(F) = %il?oﬁl{k € E: k < n}| exists

where the vertical bar denotes the cardinality of the
respective set.

Definition 2.1. (Maio and Kocinac, 2008). A
sequence x = (x;) in atopological space X is said
to be datistically convergent to ¢ if for every
neighborhood V' of ¢

S({k € N:x, € V}) = 0.

In this case, wewrite S — limx = 4.

By a lacunary sequence 6 = (k,.), where k, = 0,
we shall mean an increasing sequence of non-
negative integers with h,:k, —k,_; > as
r — oo, The intervals determined by 6 will be

denoted by I, = (J,—y, k,] and the ratio = will be

r—1

defined by g, (see Freedman et al., 1978).

Definition 2.2. Let 6 be a lacunary sequence and
I, ={kik,_; <k <k} Let KcN. The number
89(K) is called the lacunary density or 6-density of
K if

1
8g(K) =lim—|{i € I,:i € K}| exists.
r h,

The generalized lacunary mean is defined by

t-(x) = hirz X

kel

Definition 2.3. A sequence x = (x;) is said to be
6-summable to number £ if t,.(x) > £ asr - . In
this case we write £ is the 8-limit of x. If 6 = (27),
then #-summable reduces to C;-summable (see
Freedman et al., 1978).

We now give the definition of lacunary statistical
convergencein topologica spaces.

Definition 2.4. Let 6 be a lacunary sequence. A
sequence x = (x;) in atopological space X is said
to be lacunary datistical convergent or Sy-
convergent to ¢ provided that for each
neighborhood V' of zero, the set

KWV)={keN:ix, —£ ¢V}
has 0-density zero. In this case we write Sg-

S
limx = £ or (x;) — 2.

Let X be areal vector space and < be a partial
order on this space. Then X is said to be an ordered
vector spaceif it satisfies the following properties:
() ifx,yeXady<x theny+z<x+2z for
eachz € X.

(ii) if x,y € X and y < x, then ay < ax for each
a=0.

If, in addition, X is a lattice with respect to the
partia ordered, then X is said to be a Riesz space
(or avector lattice)(Zannen, 1997).

For an element x of a Riesz space X, the positive

part of x is defined by x* = x v 0 = sup{x, 0}, the
negative part of x by x~ = —x v 0 and the absolute

value of x by |x| = x vV (—x), where 0 is the zero
element of X.

A subset S of aRiesz space X is said to be solid if
y € Sand|x| < |y| impliesx € S.

A topological vector space (X,7) is a vector
space X which has a topology (linear) t, such that
the algebraic operations of addition and scalar
multiplication in X are continuous. Continuity of
addition means that the function f:X xX - X
defined by f(x,y) = x + y iscontinuouson X X X,
and continuity of scalar multiplication means that
the function f: R X X — X defined by f(a,x) = ax
iscontinuouson R X X.

Every linear topology T on a vector space X has a
base N for the neighborhoods of 6 satisfying the
following properties:

(1) Each Y € N is a balanced set, that is, ax €Y
holds for all x €Y and for every a € R with
la] < 1.

(2) Each Y € N is an absorbing set, that is, for
every x € X, thereexistsa > 0 suchthat ax € Y.
(3) For each Y € N there exists some E € N with
E+ECY.

A linear topology T on a Riesz space X is said to
be locally solid (Roberts, 1952) if T has a base at
zero consisting of solid sets. A locally solid Riesz
space (X,t) is a Riesz space equipped with a
locally solid topology .

Recall that a first countable space is a topological
space satisfying the "first axiom of countability”.
Specifically, a space X is said to be first countable
if each point has a countable neighborhood
basis(local base). That is, for each point x in X
there exists a sequence Vi, V,,-- of open
neighborhoods of x such that for any open
neighborhood V of x there exists an integer j with
V; contained in V.

The purpose of this article is to give certain
characterizations  of lacunary  statistically
convergent sequences in locally solid Riesz spaces
and to obtain extensions of a decomposition
theorem, a Tauberian theorem and some inclusion
results related to the notions statistical convergence
and lacunary statistical convergence in locally solid
Riesz spaces.

Throughout the article, the symbol N, will
denote any base at zero consisting of solid sets and
satisfying the conditions (1), (2) and (3) in a
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locally solid topology.

3. Lacunary statistical topological convergence
in locally solid Riesz spaces

Throughout the article X will denote the Hausdorff
locally solid Riesz space, which satisfies the first
axiom of countahility.

Recently, Albayrak and Pehlivan (2012)
introduced the notion of statistical convergence in
locally solid Riesz spaces asfollows.

Definition 3.1. (Albayrak and Pehlivan, 2012). Let
(X,7) be alocally solid Riesz space. A sequence
(x;) of pointsin X issaid to be S(7)- convergent to
an element x, of X if for each r-neighborhood V' of
Z€Ero,

S({keN:ix; —x, &V} =0

1
lim—|{k <m:x, —x, € V}] =0.
m m

In this case, we write S(7)—lim_Xx; =
S(7)
X or (X)) — Xq.

Recently, Mohiuddine and Alghamdi (2012)
introduced the notion of lacunary statistical
convergence in locally solid Riesz spaces as
follows.

Definition 3.2. (Mohiuddine and Alghamdi, 2012).
Let (X,7) be a localy solid Riesz space. A
sequence (x;) of pointsin X is said to be Sy(7)-
convergent to an element x, of X if for each -
neighborhood V' of zero,

69({]{ € N:xk _xo & V}) = 0

1
llm—|{k € Ir:xk — X $ V}l =0.
r h,

In this case, we write Sg(7) —limy_ X, =
Sg(T)
X or (X)) = Xo.

Example 3.1. Let us consider the locally solid
Riesz space (R?,||.||) with the Euclidean norm
||. 1] and coordinate-wise ordering. In this space, let
us define a sequence (x;) by

1
- I, 7 2.
X = (1+k+1'2+k+1)' if k#ns;
(4,4), if k=n?

for eachn € N. Let 8 = (2" — 1). The family Ny,

of dl U, defined by
U, = {x € R%||x|| < &},

where 0 < e €R constitutes a base a zero
(6 = (0,0)). For x, = (1,2), we have

1

) ) [ k 2;
Xp —Xg = (k+1 k+1) Uy k#n

(3,2), if k=n2

For each t-neighborhood V of zero, there exists
some U, € Ng,;, € > 0 such that U, € V and
(k€ N:x; —x, € U} = KU{1,49,16,-,n%},
where K is afinite set. Then, we have

59({]{ € lek — X ¢ V})
< 69({]{ € N:xk — Xp (o2 Ug})
= 85 (K) + 85 ({1,4,9,16,+,n2,~}) = 0.

Hence Sy (7) — limyx;, = (1,2).

Definition 3.3. (Mohiuddine and Alghamdi, 2012).
Let (X,7) be a locdly solid Riesz space. A
sequence (x;) of pointsin X is said to be Sy (7)-
bounded in X if for each t-neighborhood V of zero,
thereissomea > 0,

So({k € N:ax, g V}) = 0.

Definition 3.4. (Mohiuddine and Alghamdi, 2012).
Let (X,7) be a localy solid Riesz space. A
seguence (x;) of points in X is said to be Sg(7)-
Cauchy in X if for each t-neighborhood V' of zero
thereisaninteger n € N,

So({k € Nixy — x, & V}) = 0.

Theorem 3.1. Let (X,T) be a localy solid Riesz
space. A sequence (xy) is Sg(T)-convergent to x, in
X if and only if for each T-neighborhood V of zero
there exists a subsequence (Xy,m)) Of (xx) such
that 1imr_,ooXk,(r) = Xp and

59({]{ € NIXk - Xk,(r) GE V}) =0.

Proof: Let x = (x;) be a sequence in X such that
Se(7) — limy_, 00X, = Xo. Let V be an arbitrary -
neighborhood of zero. Let {I},} be a sequence of
nested base of 7-neighborhood of zero. We write

E® ={k € N:x;, —x, & V;},

for any positive integer i. Then for each i, we have

. . 0
EWD c E® and limT'Eh—mr| = 1. Choose n(1)

such that r>n(1), then |[EMWNI.|>0 ie,
EM N1, # ¢. Then for each positive integer r such
that n(1) < r < n(2), choose k'(r) € I such that
k'(r) e ED N1, i.e Xy — X € Vy. In general,
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choose n(p + 1) > n(p) such that r >n(p + 1),
then E@*U NI, # ¢. Then for all r satisfying
n() <r<n(p+1), choose k'(r) e EP nlI,
i.e. Xy — X €V, Hence it follows that
lim, X,y = %Xo-

Since V is an arbitrary t-neighborhood of zero,
there exists Y € Ny,; such that Y < V. Choose
W € Ny, suchthat W + W < V. Now we have

{k € Nix; — X' (ry & v}
C{keNx —xg @ WU {r € Nixg,y — X
¢ Wi
Since So (1) — limy X, = Xg and
im0 X sy = X impliesthat
69({]( € N:xk — xk,(r) & V}) =0.

Next suppose for an arbitrary t-neighborhood V
of zero there exists a subsequence (x,¢y) of (xi)

such that limr_,ka,(r) = Xp and
69({]( € N:Xk - xk,(r) $ V}) =0.

SinceV isany t-neighborhood of zero, we choose
W € N, suchthat W + W < V. Then we have

6p({k eNix;, —x, 2 V})
< 8p({k € Nixy — Xy € W}) + 89 ({r
€ N:xkl(‘r) - XO $ W})

Therefore
69({’( € N:xk — X $ V}) = 0.

Theorem 3.2. Let (X, 1) be a localy solid Riesz
space. If a sequence (xy) is Sg(T)-convergent to x,
in X, then there are sequences (yy) and (zy) such
that Sg(t) — limy_, Yk = X and Xi = yi + 7z, for
dl k e N and 69({1( € NIXk * yk}) =0 and (Zk) is
aSg(1)-null sequence.

Proof: Let {V;} be a nested base of t-
neighborhoods of zero. Take n, = 0 and choose an
increasing sequence (n;) of positive integers such
that

1
So({k € Nix) — x5 € V;}) <? fork > n;.

Let us define the sequences (y,) and (z,) as
follows:

Ve =Xgandz, =0,if 0 <k <n
and supposen; < n;,q, fori =1,
Ve =X, andz, = 0,if x,, —xo EV;

Vi = Xg and z, = x, — X, if X, — X9 € V;.

To show that (i) limy_ .y, = xo (ii) (z) is a
S (7)-null sequence.
(i) Let V be an arbitrary 7-neighborhood of zero.
Since X isfirst countable, we may choose a positive
integer i such that V; € V. Then y, —x, = x, —
xo EV;, fork >n;. If x,, —xy €V, theny, —x, =
Xo — %o = 0 € V.Hencelimy_,, Vi = Xo.
(i) It isenough to show that 6, ({k € N: z, # 0}) =
0. For any T-neighborhood V of zero, we have

So({k eN:z;, ¢ V}) < §5({k € N: ;. # 0}).
Ifn, <k < mnp,q, then
{keN:zy # 0} S {k € Nixy —x, €V}
Ifp>iandn, <k < ng,,,,then
Sg({k € N: z;, # 0})

11
<Ok ENim —xp € hY << <e

This implies that 6&g({k € N:z, # 0}) = 0.
Hence (z;,) isa S, (7)-null sequence.

Corollary 3.3. Any lacunary convergent sequence
in a localy solid space has a convergent
subsequence.

Proof: The proof of this result follows from the
preceding theorem.

Theorem 3.4. Let (X,T) be a localy solid Riesz
space and let x = (xi) be a sequence in X. If there
is a Sg(t)-convergent sequence y = (yy) in X such
that 6g({k € Ny # x € V}) = 0 then x is also
Sg(T)-convergent.

Proof: Suppose that §g({k € N:y, #x, € V}) =0
and Sy (t) — lim,y, = x,. Then for an arbitrary -
neighborhood V' of zero, we have

8y ({k € Niyy —x0 € V) = 0.
Now,
{kEN:xk—xo $V}§{k€Nyk¢xk
$V}U{k€Nyk—x0€V}
ﬁé‘g({k € N:xk_xo ¢ V}) < 69({]{ € N:yk

*x, €V} + 6g({k
EN:y, — x5 € V).

Therefore, we have
59({]{ € N:xk _xo € V}) = 0

Now we give the definition of slowly oscillating
inlocally solid Riesz spaces.

Definition 3.5. A sequence (x;) in alocaly solid
Riesz space X is called lowly oscillating if for each
t-neighborhood V' of zero, there exists a positive
integer m, and & > 0 such that if my <k <n<
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(1 + &)k, then (x,, — x;) € V.
Now we give a Tauberian theorem.

Theorem 3.5. Let (X,T) be a localy solid Riesz
space. If (xy) is statistically convergent and slowly
oscillating, then it is convergent.

Proof: Let S(t) — limx, = x,. Then we have a
subsequence (i,) with 1 <i; <i, <...<i, <..
of those indices n for which y,, = x,,. Since

11m |{n<k Xn # Yn}l = 0.

Then, we have

1 m
lim —|{n<inx, =y} = lim—=1.
m-oo [, m—)ool

Consequently, it follows that

Imt1 _ = lim imyr M+l m =1 (1)

lim >
m-ooo im m-oco m+1° m im

By the definition of (i,,,), we get

limx; = 11m 1 Vi, = Xo- (2
m-—o0o
By (1) and (2) we conclude that for each closed 7-
neighborhood V of zero, there exists a positive
integer n, such that if m > n, then (x, — x;,)) €V
whenever i, < k < i, Since V is arbitrary, it
follows that
lim (x, —x;, ) = 0.
m—oo
By (3.2), we have (x,,,) is convergent to x,. This
completes the proof of the theorem.

4. Someinclusionsrelationsin locally solid Riesz
spaces

Theorem 4.1. Let (X,1) be a localy solid Riesz
space and x = (xi) be sequence in X. For any
lacunary sequence 6 = (k,), S(t) € Sg(t) if and
only if liminf.q, > 1.

Proof:  Suppose first that liminf,.q, >
1,liminf,q, = a(say). Write b = %1 Then there

exists an integer n, € N such that g, =1+ b for
r = ny. Hencefor r = ny,
h, k._ 1 1 b

T >l =
k, k, a 1+b 1+b

Suppose that S(t) — lim,x;, = x,. We prove that
So(t) — limyx, = x,. Let V be an arbitrary t-
neighborhood of zero. Then for al r > n,, we have

1
k—l{ksk X — X9 € VI

T
|{k€1 X, — X0 € VI

hrl
:k_h_l{k € Lixy — X0 € V3
b 1
>—h—|{kel X — X9 € VY.

S(7)
Since  (x) AR xo. Therefore this inequality

Sg(1)
impliesthat (x,) = x,. Hence S(z) € Sy (7).
Next we suppose that liminf,q, = 1. Then, we
can choose a subsequence (k;) of the lacunary
sequence 6 such that
kriy-1

k. 1
UORPE] +— and
kyiy-1 l kyi-1y

>,

wherer(i) > r(i — 1) + 2. Take a(# 0) € X. Now
we define a sequence (x;,) by

{a, ifk € Ir(i),for somei = 1,2,3,-
X, =
k 0, otherwise.

Then S(t) — lim, x;, = 0. To seethistakeV be an
arbitrary t-neighborhood of zero. We choose
W € Ny, such that W<V and a ¢ W. On the
other hand, for each m we can find a positive
number i, suchthat k,; y <m < k., +1)- Then

1
—H{k <m:x, ¢V}
m

1
< |[{k < m:x;, & W}

7(im)

{l{k < kr(im):xk & W}l + |{kr(im) <k

7(im)

<m:x, € W3}
1
< A |{k < kr(im):xk

7(lm)

EW)|+— (kramm Kr (i)

1 1 1
<—HlH—-1<
im im m+1

+ — for each m.

Therefore S(t) — lim,x;,, = 0. Now let us see that
(xx) € Sp(7). Let V be a 7-neighborhood of zero
such that a € V. Thus

1
lim — |{kT(L) 1<k< kr(t) Xy & V}l

i—oo (i)

= lim
120 Ry ()

(kr(i) - r(i)—l)

1
= llm—hr(l) =1

—00 ( )

andforr #r(i),i =12;3,..
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1
lim —|{k,_1 <k <kpx,—a&V} =1
r—o0 hr
Hence neither a nor 0 can be lacunary statistical
limit of (x;). No other point of X can be lacunary
statistical limit of the sequence (x;) as well. Thus

(Xi) & Sp(2).

Theorem 4.2. Let (X,1) be a localy solid Riesz
space and let x = (xi) be sequence in X. For any
lacunary sequence 6 = (k;), Sg(t) € S(t) if and
only if limsup,q, < oo.

Proof: Suppose that limsup,q, < . Then there
exists an H > 0 such that q, < H for al r. Let
Se(7) —limyx, = x,. Let V be an arbitrary 1-
neighborhood of zero. Let € > 0. We write

M, ={k€l.x,—xy &V}

By the definition of lacunary statistical
convergence, there is a positive number r,, such that

M o & torallr >
<2 orallr > r,.

Let M = max{M,:1 <r <ry} and let m be any
integer satifying k,_; < m < k,; then we can write

1
o, T

1
E|{k§m:xk_xoev}| =T

Since lim,_ .k, = o, there exists a positive
integer r;, > 1y, such that

! <
k._1 2rgM

forr > r,.
Hence, forr > r;

Lk <m: gV} <—+t=-=
Sk =mix—x @Vl <545 =e
It followsthat S(t) — limx;, = x,.

Now we suppose that limsup,.q, = co. Take an
element a # 0 € X. Let (k,(;)) be a subsequence of
the lacunary sequence 6 = (k,) such that g, >
i, ky > i+ 3. Define a sequence (x;) by

xo = {a, if kr(i)—l <k< Zkr(i)—lﬂ
k 0, otherwise,

for some i = 1,2,3,::-. Let VV be a 7-neighborhood
of zerosuchthata ¢ V. Thenfori > 1

k-1

k<k.nx, €V} <
hr(i)l{ r():*k }I hr(i)

Ky 1
r{)-1 <

kray —kr@p-1  i—1

Hence (x;) € Sp(7). But (x;) € S(7), because

k < 2kppy-q: Vv
Zkr(i)—l |{ = r()—-1 Xk ¢ }l

_ 1
= Zkr(i)_l [kr(l)—l + kT(Z)—1+' e +kT(i)—1] > E

Corollary 4.3. Let (X,1) be a locally solid Riesz
space and let x = (x) be sequence in X. For any
lacunary sequence 6 = (k.), Sg(t) = S(t) if and
only if 1 < liminf,q, < limsup,q, < co.

Theorem 4.4. Let (X,T) be a localy solid Riesz
space and let x = (x) be sequence in X. For any
lacunary sequence 6 = (k,), if x = (xx) € Sg(T) N
S(1) then S(t) — limy_, Xk = Sg(T) — limy_, Xy

Proof. Let x = (x3) € Sp(r) N S(r) and S(7) —
limy X = %9, and  Sg(t) — limg_ Xy = Vo
Suppose that x, # y,. Since X is a Hausdorff, then
there exists a t-neighborhood V' of zero such that
Xo—Yo €V. We choose W € Ny, such that
W + W c V. Then, wehave

1
k_l{k < kmixo — Yo € V3
m
< 1k < ki xy — X0 € WY 4= |{k <
km:yo —x) € W} ©)

It follows from thisinequality that
1 1
1 S _l{k S km:xk _xo e W}l +_|{k
K K
<kpn:yo—xi € W}

Wewrite

1
10k < e o = i € W)
1’” m
= =ttee| J hiyo—xe e wy)
m r=1

m
1
= =D k€ iy —x, € W)
m

where

1
T, = h_l{k €L1yo — xx € W}
T
Since  Sg(7) —limye0x, =y, ~We have
lim, T, = 0. Therefore the regular weighted
mean transform of (T;.) also tendsto O, i.e.,

lim = {k < kpn:yo — % & W} = 0, o)

m—oo km
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Also, since S(t) — limy_,,x; = x4, We have

lim - [{k < ki X — %o & W3 = 0. (5)

m—oo Kkm

From (3), (4) and (5), we have

1
10k < kinixo = yo € V)] = 0.
m

5. Statistically lacunary t-convergence in locally
solid Riesz spaces

Definition 5.1. Let (X,7) be alocally solid Riesz
space. A seguence x = (x;) is sad to be 6-
summable in (X,7) or simply 6, — summable to
an element x, of X if for each 7-neighborhood V' of
zero such that t,.(x) — x, € V. In this case we write
6, — limx = x, and x, is called the 8-limit of the
sequence x = (xy).

Definition 5.2. Let (X,7) be alocally solid Riesz
space. A sequence (x) of pointsin X is said to be
statitically lacunary t-convergent or S (T)-
convergent to an element x, of X if for each -
neighborhood V of zero, the set K(6) ={r e
N:t.(x) —x, € V} has natural density zero, i.e,
8(K(0)) = 0,

or

1
lim=|{r <n:t.(x) —x, € V}| = 0.
n n

In this case, we write S5, (7) — limy X, =
S59(®)
Xgor (X)) = X

Theorem 5.1. Let (X, 1) be a localy solid Riesz
space. A sequence x = (xi) in X is Sg (T)-
convergent to x, if and only if there exists a set
K={rh<r,<-<r,<-}cSN such tha
8(K) =1and 0, — lim.ckX, = Xo.

Proof: Let VV be an arbitrary 7-neighborhood of
zero. Suppose that 6, — lim,cxx, = x,, there
exists a st K={n<n<-—-<n<-}CEN
with §(K) =1 and N = N(V) such that (t,.(x) —
Xo) EV for r > N. Write K, = {r € N: t,.(x) —
xo € V} and K; = {kyn41, kns2s -} Then 6(K;) =
1 and K, € N — K; which implies that §(K;) = 0.
Hencex = (x;) is S5, (t)-convergent to x,.
Conversely suppose that x = (x;) is Ss,(7)-
convergent to x,. Fix a countable loca base
Vi, oV, > ax, Foreachi € N, put

K ={reN:t.(x) —x, € V;}.

By hypothesis §(K;) = 0 for each i. Since the
ideal 7 of al subsets of N having density zero is a

P-ideal (see for instance Farah, 2000), then there
exists a sequence of sets (J;); such that the
symmetric difference K;AJ; is a finite set for any
ieNandj:=U, J; € 7.

Let K = N\J, then 6(K) = 1. In order to prove
the theorem, it is enough to check that
HmrEKtr(x) = Xo-

Let i € N. Since K;4J; is afinite, thereisr; €N,
without loss of generality with r; € K, r; > i, such
that

(NJY)Nn{reN:r=r}=N\K)n{reN:r =r}. (6)

If reK and r=1;, then r¢J;, and by (6)
r & K;. Thus t.(x) — x, € V;. So we have proved
that for al i €N there is r; € K, r; > i, with
t.(x) —xy €V; for every r > r;: without loss of
generality, we can suppose r;., >1; for every
i € N. The assertion follows taking into account
that the Vs form a countable local base at x;,.
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