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Abstract 

In this study organotypic adult spinal cord slices were used to investigate whether caspases could participate in the 
apoptosis of motor neurons. The thoracic region of spinal cord was sliced using a tissue chopper and cultured in a 
medium for 6h. Morphological and biochemical features of apoptosis were assessed by fluorescent staining and 
terminal deoxynucleotidyl nick end labeling (TUNEL) method respectively. To investigate the role of caspases, 
general caspase inhibitor, Z-VAD.fmk, and immunohistochemistry for activated caspase-3 were used. After 6h in 
culture, many motor neurons displayed morphological features of apoptosis. In addition, the neurons appeared 
TUNEL positive. Z-VAD.fmk not only prevented apoptosis in the motor neurons but also increased motor neurons 
viability after 6h. At this time point, immunolocalization to activated caspase-3 was also detected in the cytoplasm 
and the nuclei of apoptotic motor neurons. Results of the present study suggest a caspase-dependent apoptosis in 
motor neurons of adult spinal cord slices. 
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1. Introduction 

In the spinal cord, cell death occurs in motor 
neurons during development as a physiological 
process (Sendtner, 2000). These neurons may also 
die under pathological conditions such as spinal 
cord injury (Liu, 1997) and amyotrophic lateral 
sclerosis (Martin, 2000), a progressive 
neurodegenerative disorder leading to motor neuron 
loss, axonal denervation, muscular atrophy and 
death (Bigini, 2007). It has been shown that 
apoptosis contributes to cellular damage after 
traumatic spinal cord injury in human (Emery, 
1998) and rat (Yong, 1998). Apoptosis might also 
be responsible for neuronal cell death during spinal 
cord injury in vitro. For instance, Casha and co-
workers (Casha, 2005) in a model of spinal cord 
injury demonstrated neuronal apoptosis in spinal 
cord slices exposed to weight drop injury. We have 
recently shown apoptosis in adult spinal cord motor 
neurons at early time point of slice culture 
(Momeni, 2007).  

Apoptosis is a form of programmed cell death 
which is characterized by morphological and 
biochemical changes (Ziegler and Groscurth, 2004). 
Apoptosis can be induced in neurons by a caspase-
independent manner (Bigini, 2007, Momeni, 2008). 
Caspase-dependent apoptosis is also a known 
pathway in a wide variety of cells including neurons 
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(Momeni, 2013, Raghavamenon, 2011; Weber, 
2013). Following the induction of this form of 
apoptosis, a family of cysteine proteases, caspases, 
are activated either via death receptors or 
mitochondria (Wang, 2005). In most models in 
which caspases are involved, caspase inhibitors are 
shown to attenuate apoptosis (Thornberry and 
Lazebnik, 1998). Among all caspases, caspase-3 is 
considered to be responsible for the cleavage of key 
cellular proteins such as cytoskeletal (Chang and 
Yang, 2000) and nuclear (Robertson, 2000) 
proteins. In this context, caspase-3 has been 
reported to play a critical role in neurodegenerative 
diseases (Hartmann, 2000, Louneva, 2008) as well 
as in spinal white and gray matter after spinal cord 
injury in rat (Keane, 2001).  

Several hypothesis such as glutamate 
excitotoxcicity (Pizzi, 2000) and calpain (Momeni, 
2007), calcium dependent proteases, have been 
proposed to explain the mechanism(s) responsible 
for the apoptosis of motor neurons in adult spinal 
cord slices. However, it seems likely that such 
pathways are not be the only mechanisms by which 
apoptosis is induced in these neurons. Therefore 
organotypic adult spinal cord slices in culture were 
used to examine whether caspase could be involved 
in motor neurons apoptosis. 
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2. Materials and Methods 

a) Animals and preparation of organotypic spinal 
cord slices 

Adult female Balb/c mice (23-25 g) were 
purchased from Pasture Institute, Tehran, Iran. The 
animals were housed in plastic cages at 20C, a 12-
h light/ dark cycle, and fed with standard 
commercial laboratory chew and water. The 
experiments were approved by the local ethical 
committee on research animal care at Arak 
University. The animals were deeply anesthetized 
by an intraperitoneal injection of sodium 
pentobarbital (60 mg/kg) and subsequently killed 
by heart puncture. The spinal cord was dissected 
and placed in ice cold phosphate-buffered saline 
(PBS), pH 7.4. The thoracic region of the spinal 
cord was then sliced transversally into 400 µm-
thick sections using a McIlwain tissue chopper 
(Stoelting, USA). The slices were then placed in a 
four well sterile plastic plate where each well 
contained 450 µl medium composed of a mixture of 
50% minimum essential medium, 25% Hanks 
balanced salt solution, 25% horse serum, 25 mM N-
2-hydroxyethyl piperazine-N’-2-ethanesulfonic acid 
(HEPES), 6g/L glucose and 1% penicillin-
streptomycin, pH 7.3-7.4). The cultures were 
incubated at 37C in a humidified atmosphere of 
5% CO2 in air for 6h in the absence (control) or 
presence of general caspase inhibitor, Z-VAD.fmk 
(N-Benzyloxycarbonyl-Val-Ala-Asp (O-Me) 
fluoromethyl ketone, Sigma, USA). The inhibitor 
was dissolved in dimethylsulfoxide (DMSO) as 
stock solution and stored at -20C. The stock 
solution was directly added to the medium. 
Controls also received a corresponding amount of 
DMSO.  

b) Fixation and sectioning 

Freshly prepared (0h) and cultured slices were 
fixed in Stefanini’s fixative (2% paraformaldehyde, 
0.2% picric acid in 0.1 M phosphate buffer, pH 7.2) 
for at least 2h. The fixed slices were washed in PBS 
(3×5 min) and incubated overnight in 20% sucrose 
in PBS at 4C. The slices were cut into 10 µm-thick 
sections in a cryostat. The sections were collected 
and mounted on Poly-L-lysine coated glass slides. 

c) Assessment of apoptosis 

Apoptosis was assessed by fluorescent staining, 
terminal deoxynucteotidyl nick end labeling 
(TUNEL) method and agarose gel electrophoresis. 
To study morphological features of apoptosis, the 
combination of propidium iodide (PI, Sigma, USA, 
10 µg/ml in PBS, 15 min at room temperature) and 

Hoechst 33342 (Sigma, USA, 10 µg/ml in PBS, 1 
min at room temperature) was used. The cryostat 
sections were washed in PBS (3×5 min), mounted 
in glycerol/PBS (1:1) and coverslipped. The 
percentage of motor neurons (n=20) viability was 
estimated by counting 12 randomly selected ventral 
horns from each experiment. Photographs were 
taken with an Olympus camera attached to an 
Olympus fluorescence microscope (Olympus 
Optical Co. Ltd, Japan) using the appropriate 
excitation and emission filters.  

To evaluate biochemical analysis of apoptosis, 
TUNEL assay was used to detect apoptotic motor 
neurons using ApopTag plus Peroxides in Situ kit 
(Chemicon, USA) according to the manufacture’s 
protocol. The motor neurons counterstained with 
methyl green showed normal nuclei. In contrast, the 
nuclei that contain DNA fragments were positively 
stained dark brown. The motor neurons were then 
photographed under a light microscope.  

d) Immunohistochemistry 

For immunohistochemistry, the cryostat sections 
were washed in PBS (3×5 min) and incubated with 
a 1:200 dilution of a rabbit antibody against the 
active form of caspase-3 (Cell Signaling and 
Technology, USA) in a moist chamber at 4C 
overnight. The sections were washed in PBS (3×5 
min) and incubated with goat anti rabbit Alexa 488 
(Molecular Probes, USA) labeled secondary 
antibody at room temperature for 1h. For the 
assessment of non-specific immunostaining, 
alternative sections were incubated without the 
primary antibody. The sections were then washed in 
PBS (3×5 min), mounted in glycerol/PBS solution 
(1:1) and coverslipped. Photographs were taken 
with the fluorescence microscope. 

e) Statistical analysis 

Results were expressed as mean SD. The 
statistical significances were analyzed by analysis 
of variance (ANOVA). In all cases, P<0.05 was 
considered significant.  

3. Results 

a) Morphological and biochemical features of 
apoptosis in the motor neurons 

Fluorescent staining was used to determine 
apoptotic cell death based on morphological 
changes (Fig. 1). In freshly prepared slices (0h) the 
motor neurons showed large cell bodies, large 
nuclei and the expected distribution of nuclear 
material and no apoptotic signs could be observed 
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condensation and DNA fragmentation (Jeong and 
Seol, 2008; Robertson, 2000). Therefore, it is 
reasonable to assume that the cytoplasmic and 
nuclear apoptotic changes in the motor neurons are 
due to the activity of protease(s) and nuclease(s). 

In our experiments, the exact upstream death 
signals responsible for activation of caspase-3 are 
not yet defined. Two well-studied caspase 
activation pathways include the death receptor-
mediated pathway and the mitochondria-mediated 
pathway (Wang, 2005). Both pathways participate 
in the downstream process, resulting in caspase-3 
activation (Wong, 2006). Which upstream signals 
are responsible for apoptosis of motor neurons 
remain to be studied.  

5. Conclusion 

The immunolocalization of activated caspase-3 in 
apoptotic motor neurons as well as the possibility 
that the caspase inhibitor could delay apoptosis in 
these neurons and significantly increase motor 
neurons viability suggest that caspases, in particular 
caspase-3, might be involved in the apoptosis of 
adult spinal cord motor neurons. 

Acknowledgments 

This study was supported by a Grant from Arak 
University. We would like to thank Monireh 
Mahmoddi and Mehdi Nodeh Farahani for their 
technical help. 

References 

Bigini, P., Atzori, C., Fumagalli, E., Cagnotto, A., 
Barbera, S., Migheli, A. et al. (2007). Lack of caspase-
dependent apoptosis in spinal motor neurons of the 
wobbler mouse. Neurosci Lett, 426, 106–110. 

Casha, S., Yu, W. R., Fehlings, M. G. (2005). FAS 
deficiency reduces apoptosis, spares axons and 
improves function after spinal cord injury. Exp Neurol, 
196, 390–400. 

Chang, H. Y., Yang, X. (2000). Proteases for cell suicide: 
functions and regulation of caspases. Microbiol Mol 
Biol Rev, 64, 821–846. 

Das, A., Sribnick, E. A., Wingrave, J. M., Del Re, A. M., 
Woodward, J. J., Appel, S. H. et al. (2005). Calpain 
activation in apoptosis of ventral spinal cord 4.1 
(VSC4.1) motoneurons exposed to glutamate: calpain 
inhibition provides functional neuroprotection. J 
Neurosci Res, 81, 551–562. 

Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. 
(1999). Mammalian caspases: structure, activation, 
substrates, and functions during apoptosis. Annu Rev 
Biochem, 68, 383–424. 

Eldadah, B. A., Faden, A. I. (2000). Caspase pathways, 
neuronal apoptosis, and CNS injury. J Neurotrauma, 
17, 811–829. 

Emery, E., Aldana, P., Bunge, M. B., Puckett, W., 
Srinivasan, A., Keane, R. W. et al. (1998). Apoptosis 

after traumatic human spinal cord injury. J Neurosurg, 
89, 911–920. 

Hartmann, A., Hunot, S., Michel, P. P., Muriel, M. P., 
Vyas, S., Faucheux, B. A. et al. (2000). Caspase-3: A 
vulnerability factor and final effector in apoptotic 
death of dopaminergic neurons in Parkinson's disease. 
Proc Natl Acad Sci U S A, 97, 2875–2880. 

Hendzel, M. J., Nishioka, W. K., Raymond, Y., Allis, C. 
D., Bazett-Jones, D. P., Th'ng, J. P. (1998). Chromatin 
condensation is not associated with apoptosis. J Biol 
Chem, 273, 24470–24478. 

Jeong, S. Y., Seol, D. W. (2008). The role of 
mitochondria in apoptosis. BMB Rep, 41, 11–22. 

Kaufmann, S. H., Hengartner, M. O. (2001). Programmed 
cell death: alive and well in the new millennium. 
Trends Cell Biol, 11, 526–534. 

Keane, R. W., Kraydieh, S., Lotocki, G., Bethea, J. R., 
Krajewski, S., Reed, J. C. et al. (2001). Apoptotic and 
anti-apoptotic mechanisms following spinal cord 
injury. J Neuropathol Exp Neurol, 60, 422–429. 

Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., 
McDonald, J. W. et al. (1997). Neuronal and glial 
apoptosis after traumatic spinal cord injury. J Neurosci, 
17, 5395–5406. 

Louneva, N., Cohen, J. W., Han, L. Y., Talbot, K., 
Wilson, R. S., Bennett, D. A. et al. (2008). Caspase-3 
is enriched in postsynaptic densities and increased in 
Alzheimer's disease. Am J Pathol, 173, 1488–1495. 

Martelli, A. M., Bareggi, R., Bortul, R., Grill, V., 
Narducci, P., Zweyer, M. (1997). The nuclear matrix 
and apoptosis. Histochem Cell Biol, 108, 1–10. 

Martelli, A. M., Zweyer, M., Ochs, R. L., Tazzari, P. L., 
Tabellini, G., Narducci, P. et al. (2001). Nuclear 
apoptotic changes: an overview. J Cell Biochem, 82, 
634–646. 

Martin, L. J., Price, A. C., Kaiser, A., Shaikh, A. Y., Liu, 
Z. (2000). Mechanisms for neuronal degeneration in 
amyotrophic lateral sclerosis and in models of motor 

neuron death (Review). Int J Mol Med, 5, 3–13. 
Momeni, H. R., Azadi, S., Kanje, M. (2007). Calpain 

activation and apoptosis in motor neurons of cultured 
adult mouse spinal cord. Funct Neurol, 22, 105-110. 

Momeni, H. R., Soleimani Mehranjani, M., Abnosi, M. 
H., Kanje, M. (2008). Apoptosis in cultured spinal cord 
slices of neonatal mouse. Iranian Journal of Science & 

Technology, Transaction A, 32, 109–116. 
Momeni, H. R., Soleimani Mehranjani, M., Shariatzadeh, 

M. A., Haddadi, M. (2013). Caspase-mediated 
apoptosis in sensory neurons of cultured dorsal root 

Ganglia in adult mouse. Cell J, 15, 212–217. 
Pizzi, M., Benarese, M., Boroni, F., Goffi, F., Valerio, A., 

Spano, P. F. (2000). Neuroprotection by metabotropic 
glutamate receptor agonists on kainate-induced 
degeneration of motor neurons in spinal cord slices 

from adult rat. Neuropharmacology, 39, 903–910. 
Raghavamenon, A. C., Muyiwa, A. F., Davis, L. K., 

Uppu, R. M. (2011). Dihydroartemisinin induces 
caspase-8-dependent apoptosis in murine GT1-7 
hypothalamic neurons. Toxicol Mech Methods, 21, 

367–373. 
Robertson, J. D., Orrenius, S., Zhivotovsky, B. (2000). 

Review: nuclear events in apoptosis. J Struct Biol, 129, 
346-358. 



 
 

IJST (2014) 38A1: 55-60                                                                                                                                               60 
 
Scholz, J., Broom, D. C., Youn, D. H., Mills, C. D., 

Kohno, T., Suter, M. R. et al. (2005). Blocking caspase 
activity prevents transsynaptic neuronal apoptosis and 
the loss of inhibition in lamina II of the dorsal horn 

after peripheral nerve injury. J Neurosci, 25, 7317–
7323. 

Sendtner, M., Pei, G., Beck, M., Schweizer, U., Wiese, S. 
(2000). Developmental motoneuron cell death and 
neurotrophic factors. Cell Tissue Res, 301, 71-84. 

Sgonc, R., Gruber, J. (1998). Apoptosis detection: an 

overview. Exp Gerontol, 33, 525–533. 
Sharifi, A. M., Eslami, H., Larijani, B., Davoodi, J. 

(2009). Involvement of caspase-8, -9, and -3 in high 
glucose-induced apoptosis in PC12 cells. Neurosci 

Lett, 459, 47–51. 
Thornberry, N. A., Lazebnik, Y. (1998). Caspases: 

enemies within. Science, 281, 1312–1316. 
Wang, Z. B., Liu, Y. Q., Cui, Y. F. (2005). Pathways to 

caspase activation. Cell Biol Int, 29, 489–496. 
Weber, H., Muller, L., Jonas, L., Schult, C., Sparmann, 

G., Schuff-Werner, P. (2013). Calpain mediates 
caspase-dependent apoptosis initiated by hydrogen 
peroxide in pancreatic acinar AR42J cells. Free Radic 

Res, 47, 432–446. 
Wong, D. C., Wong, K. T., Lee, Y. Y., Morin, P. N., 

Heng, C. K., Yap, M. G. (2006). Transcriptional 
profiling of apoptotic pathways in batch and fed-batch 

CHO cell cultures. Biotechnol Bioeng, 94, 373–382. 
Yong, C., Arnold, P. M., Zoubine, M. N., Citron, B. A., 

Watanabe, I., Berman, N. E. et al. (1998). Apoptosis in 
cellular compartments of rat spinal cord after severe 

contusion injury. J Neurotrauma, 15, 459–472. 
Zacharaki, T., Sophou, S., Giannakopoulou, A., 

Dinopoulos, A., Antonopoulos, J., Parnavelas, J. G. et 
al. (2010). Natural and lesion-induced apoptosis in the 
dorsal lateral geniculate nucleus during development. 

Brain Res, 1344, 62–76. 
Ziegler, U., Groscurth, P. (2004). Morphological features 

of cell death. News Physiol Sci, 19, 124–128. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


