
IJST (2014) 38A1: 19-23 
Iranian Journal of Science & Technology 

http://ijsts.shirazu.ac.ir 

 
The effect of TiO2 thin film on AC electrical properties  

of Nano porous silicon substrate 
 

E. Khalili Dermani 

 
Department of Physics, Kharazmi University, Tehran, Iran 

E-mail: ensieh_khalili@yahoo.com 
 

Abstract 

The AC electrical behaviour of nano porous silicon (PSi) with TiO2 thin films was examined over the range of 
frequency 102 to 105 Hz. Porous silicon (PSi) layers were obtained by electrochemical etching in HF solution and 
TiO2 thin films were deposited on PSi substrates by using electron beam evaporation technique at room 
temperature. The porosity of PSi layer was found by using the gravimetric method and the crystalline properties of 
the TiO2 thin films were obtained by an X-ray diffract meter. The surface morphology and AC electrical properties 
of samples were investigated by scanning electron microscopy (SEM) and electrometery respectively. For AC 
electrical properties we studied the dependence of capacitance and dissipation factor on frequency at different 
temperatures. The capacitance decreased with increasing frequency and increased with increasing temperature, 
and dissipation factor decreased with increasing frequency to a minimum value and after that increased. This 
behaviour is in good agreement with Goswami's theory. Also, the AC conductivity of sandwich structure films 
was studied over the range of frequency 102 to 105 Hz. Over the range of frequency<103Hz the band theory and 
over the range of frequency>103Hz hopping mechanism is applied in explaining the conductivity process. 
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1. Introduction 

Porous silicon (PSi) has been investigated for 
various fields such as electronics, Nano electronic 
and optoelectronics because of its luminescence 
properties, high reactivity, large surface area and 
easy integratibility with the highly advanced Si 
technology (Makara et al., 2003; Vasquez-A et al., 
2007; Ozdmir et al., 2007; Algun et al., 1999). PSi 
layers are composed of silicon wires and pores 
obtained by chemical or electrochemical etching of 
silicon wafers (Algun et al., 1990). The large 
surface area and the presence of a large number of 
unpaired dangling bonds alter the surface reactivity 
and stability of porous silicon (Bhagavannarayana 
et al., 2006). Unfortunately, many parameters of 
PSi layers often degrade with time, which leads to 
unstable working of PSi-based electronic devices. 
In recent years many efforts have been made to 
prepare of sandwich devices, which consist of PSi 
and thin films that can improve electrical and 
optical properties of PSi such as CdS, ZnO and ZnS 
(Zhao et al., 2010; Aroutiounian et al., 2009). In 
order to modify the properties of PSi for electronic 
and optoelectronic application the metal thin film 
such as TiO2 can be used on the surface of PSi (Hasan 
 
Received: 17 June 2013 / Accepted: 29 December 2013 

et al., 2008). TiO2 is a wide band gap n-type 
semiconductor (Hasan et al., 2008), with high 
refractive index and good chemical stability (Sung 
et al., 2007) which is used in many applications 
such as optical industrial (Yanget al., 2006), dye 
sensitized solar cells (Euvananon et al., 2008), 
dielectric applications (Tavares et al., 2007), gas 
sensors (Kim et al., 1998), self-cleaning purposes 
and biomedical fields (Mathews et al., 2009). A 
large number of investigations have been carryied 
out on electrical properties of porous silicon and 
TiO2 thin film separately (Hwan et al., 2005; 
Stamate et al., 2005; Milani et al., 2006) but there is 
no work about AC electrical properties of porous 
silicon coated with TiO2 thin film. In the present 
study we prepared PSi samples with 
electrochemical etching and TiO2 thin films were 
deposited by electron beam gun evaporation 
technique on PSi samples and the AC electrical 
properties of TiO2/PSi sandwich devices with Al 
electrode were investigated. 

2. Experimental 

Monocrystal silicon substrates of p-type, B-doped, 
(100) orientation, resistivity of 0.5Ω-cm and 
thickness of about 525µm were cut into 1cm2 
square plates. The samples were immersed in the 
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4. Conclusion 

Psi layers were prepared under a constant current 
density of 35mA/cm2 for duration of 20 minutes and 
TiO2 thin films were deposited with an EBPVD 
method on the surface of PSi layer. The porosity of 
PSi layers was found by using the gravimetric method 
and the main pore size of PSi layers was 37.50 nm. 
Dependence of capacitance and dissipation factor on 
the frequencyof different temperature was studied with 
an equivalent circuit model of Goswami and 
Goswami. Capacitance increased with increasing 
temperature and decreased with increasing frequency. 
Dissipation factor decreased with increasing 
frequency, before passing through a minimum and 
then increased with increasing frequency again in 
higher frequencies. We also studied the temperature 
dependence of the AC electrical conductivity in the 
Al/TiO2/PSi/Al nanostructures. The result showed that 
over the range of frequency < 103 Hz the band theory 
and over the range of frequency>103 Hz the hopping 
mechanism with low power applied to explain the 
conduction process in Al/TiO2/PSi/Al nanostructures. 
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