Vertex centered crossing number for maximal planar graph

J. Baskar Babujee* and N. Shanthini

Department of Mathematics, Anna University, Chennai, 600 025, India E-mail: baskarbabujee@yahoo.com

Abstract

The crossing number of a graph G is the minimum number of edge crossings over all possible drawings of G in a plane. The crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and VLSI circuit design. In this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

Keywords: Maximal planar; crossing number; vertex-centered crossing number

1. Introduction

A drawing (Sergio Cabello and Bojan Mohar, 2010) of a graph G in the plane is a representation of G where vertices are represented by distinct points of \mathbb{R}^2 , edges are represented by simple polygonal arcs in \mathbb{R}^2 joining points that correspond to their endvertices, and the interior of every arc representing an edge contains no points representing the vertices of G. A crossing of a drawing D is a pair $(\{e,e'\},p)$, where e and e' are distinct edges and $p \in \mathbb{R}^2$ is a common point that belongs to the interior of both arcs representing e and e' in the drawing D. A drawing D is said to be good, if it satisfies the following conditions:

- 1. no edge crosses itself
- 2. adjacent edges do not cross each other
- 3. non-adjacent edges cross each other at most once
- 4. atmost two edges crosses at a point
- 5. no two edges are tangential

The number of crossings of a good drawing \mathcal{D} is denoted by $Cr(\mathcal{D})$ and is called crossing number of the drawing. The *crossing number* Cr(G) of a graph G is the minimum $Cr(\mathcal{D})$ taken over all good drawings of G. A drawing of G with exactly Cr(G) crossings is said to be an optimal drawing. A planar graph is a graph whose crossing number is G. A drawing G with G with G with G is called an embedding of G (in the plane). The drawings considered in this paper are all good.

A plane graph G is called maximal planar if, for every pair u,v of nonadjacent vertices of G, the graph G + uv is nonplanar. A triangulation is a planar graph in which every face is bounded by three edges (including its infinite face). In any embedding

of a maximal planar graph G of order at least 3, the boundary of every region of G is a triangle and has precisely 3n-6 edges and 2n-4 faces. Thus, we can say that each maximal planar graph is a triangulation.

In this paper we consider only finite simple undirected graphs. Let the graph be G = (V, E) with |V| = n and |E| = m. We deal with the complete graphs K_n , which has n vertices and with all possible $\binom{n}{2}$ edges. A graph is planar if it has an embedding on the plane. The complete graphs K_1 , K_2 , K_3 and K_4 are planar. But K_n for $n \ge 5$ is non-planar. We construct planar graphs from K_n $(n \ge 5)$.

Usually, we exclude the edges $\{(v_k, v_l) | k = 3, 4, ..., n - 2; l = k + 2, k + 3, ..., n\}$ from the edges $\{(v_i, v_j) | i < j, 1 \le i, j \le n\}$ of K_n , to obtain a new class of graphs $Pl_n : n \ge 5$ which are planar.

Definition 1.1. The graph (J. Baskar Babujee, 2003) $Pl_n = (V, E)$ with a vertex set $V = \{v_1, v_2, ..., v_n\}$ and an edge set $E = E(K_n) \setminus \{(v_k, v_l) | k = 3, 4, ..., n - 2; l = k + 2, k + 3, ..., n\}$ is a planar graph having maximum number of edges, with n vertices.

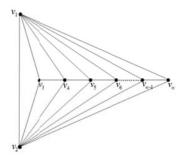


Fig 1. The Maximal Planar Graph, Pl_n

*Corresponding author

Received: 4 May 2013 / Accepted: 31 August 2013

The Pl_n -class can be valued as $P_2 + P_{n-2}$, where P_2 represents an edge v_1v_2 and P_{n-2} represents the path $v_3v_4v_5\dots v_n$. The vertices $v_1,v_2\in V(Pl_n)$ are the central vertices of Pl_n with maximum vertex degree n-1 and $v_3,v_n\in V(Pl_n)$ have the minimum vertex degree 3. All remaining vertices $v_i\in V(Pl_n)$: $4\leq i\leq n-1$ holds the degree 4 in each Pl_n graph. Also, the distance between any two vertices in each Pl_n graph is atmost two.

Let (K. R. Parthasarathy, 1994) G = (V, E) be a simple connected graph, with n vertices. The length of any shortest path between u and v of a connected graph G is called the distance between u and v and is denoted by d(u,v). For any vertex v of G, the eccentricity of a vertex v is given by e(v) = $max\{d(u,v) | u \in V(G)\}$. Then the radius of G is $r = min\{e(v) | v \in V(G)\}$ and the centre of G is $C(G) = \{v \in V(G) \mid e(v) = r\}$. The degree of a vertex v in a graph G, denoted by $d_G(v)$, is the number of edges of G incident with v. Let $\Delta(G)$ denote the maximum vertex degree and $\delta(G)$ denote the minimum vertex degree of a graph G. We introduce a vertex centered crossing number and study the same for maximal planar graph in the following section.

2. Main Results

Definition 2.1. Let G = (V, E) be a simple connected graph, with n vertices and $v \in V(G)$ be any arbitrary vertex with $d_G(v) = k < n - 1$. Then G_v is a simple graph obtained from G, by adding (n - k - 1) edges that connect all the vertices of G to v which are not adjacent to v. So the vertex v becomes a central vertex of a graph G_v with $d_{G_v}(v) = n - 1$. The minimum crossing number of a graph G_v is called a vertex centered crossing number $VCR(G_v)$ (or $VCR(G_{v,n})$) of a graph G of order n, with respect to a vertex $v \in V(G)$.

In this paper, we consider G as a maximal planar graph Pl_n . The construction of graphs $\{G_{v_i}: 3 \le i \le n\}$ from a maximal planar graph Pl_n and finding their corresponding minimum crossing number is our interest.

Theorem 2.2. If G is a maximal planar graph Pl_n , with odd order $n \ge 5$ and obtaining the simple graph G_{v_i} from G by joining $v_i \in V(G)$ to all its non-adjacent vertices in G, then the vertex centered crossing number of a graph G with respect to v_i , for each i = 3, 4, ..., n is given by,

$$VCR(G_{v_i}) = \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - i\right|,$$

for $3 \le i \le n$.

Proof: Let G be a maximal planar graph Pl_n , with odd order $n \ge 5$ and G_{v_i} be a simple graph obtained from G by including the edges $\{v_iv_j \mid 3 \le j \le i - 2\} \cup \{v_iv_j \mid i+2 \le j \le n\}$ which are pair-wise noncrossing, in any of its good drawing.

In a Pl_n graph, v_1 and v_2 are the vertices with $\Delta(G)=n-1;\ v_3$ and v_n are the vertices with $\delta(G)=3;$ and the remaining vertices $v_i\colon 4\le i\le n-1$, are with degree 4. Hence v_1 and v_2 are the central vertices of a graph G with maximum vertex degree n-1. Thus we obtain G_{v_i} , for $3\le i\le n$.

We prove the theorem by the method of induction on *i*

The basis step involves i = 3.

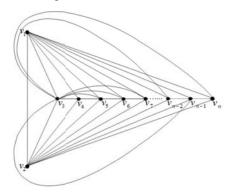


Fig 2. The Graph G_{v_3} obtained from a Maximal Planar Graph Pl_n

$$E(G_{v_3}) = E(Pl_n) \cup \{v_3v_i \mid 5 \le j \le n\}$$

Since G is a maximal planar graph, we have, Cr(G) = 0;

Cr(G + uv) > 0, for any $u, v \in V(G)$ and $uv \notin E(G)$.

From the Fig. 2, we can observe that,

$$Cr(G + v_3v_5) = Cr(G + v_3v_n) = 1, \forall n \ge 5$$

$$Cr(G + v_3v_6) = Cr(G + v_3v_{n-1}) = 2, \forall n \ge 7$$

$$Cr(G + v_3v_7) = Cr(G + v_3v_{n-2}) = 3, \forall n \ge 9$$

$$Cr(G + v_3v_i) = Cr(G + v_3v_{(n+5)-i}) = j - 4,$$

$$\forall n \ge 2j - 5 \text{ and } 5 \le j \le \frac{n+5}{2} \tag{1}$$

Hence the maximum crossing edge v_3v_j , incident with a vertex v_3 , falls on the median value from 5 to n, i.e., on $\frac{n+5}{2}$, for any finite odd value of $n \ge 5$.

Thus by substituting $j = \frac{n+5}{2}$, in equation (1), we get,

$$\begin{split} Cr\left(G+v_3v_{\frac{n+5}{2}}\right) &= Cr\left(G+v_3v_{(n+5)-\frac{n+5}{2}}\right) \\ &= \frac{n+5}{2}-4 \\ \Rightarrow Cr\left(G+v_3v_{\frac{n+5}{2}}\right) &= \frac{n-3}{2} \end{split}$$

For
$$j = \frac{n+3}{2}$$
, the equation (1) becomes,

$$\begin{split} Cr\left(G + v_{3}v_{\frac{n+3}{2}}\right) &= Cr\left(G + v_{3}v_{(n+5) - \frac{n+3}{2}}\right) \\ &= \frac{n+3}{2} - 4 \\ \Rightarrow Cr\left(G + v_{3}v_{\frac{n+3}{2}}\right) &= Cr\left(G + v_{3}v_{\frac{n+7}{2}}\right) \\ &= \frac{n-5}{2} \\ \Rightarrow Cr\left(G + v_{3}v_{\frac{n+3}{2}}\right) &= Cr\left(G + v_{3}v_{\frac{n+7}{2}}\right) \\ &= \frac{n-3}{2} - 1 \end{split}$$

Similarly,

$$Cr\left(G + v_{3}v_{\frac{n+1}{2}}\right) = Cr\left(G + v_{3}v_{\frac{n+9}{2}}\right) = \frac{n-3}{2} - 2$$
...
$$Cr(G + v_{3}v_{5}) = Cr(G + v_{3}v_{n}) = 1$$

$$\Rightarrow Cr\left(G + v_{3}v_{\frac{n+3}{2}}\right) + Cr\left(G + v_{3}v_{\frac{n+1}{2}}\right) + \cdots$$

$$+ Cr(G + v_{3}v_{5})$$

$$= Cr\left(G + v_{3}v_{\frac{n+7}{2}}\right) + Cr\left(G + v_{3}v_{\frac{n+9}{2}}\right) + \cdots$$

$$+ Cr(G + v_{3}v_{n})$$

$$\Rightarrow \sum_{j=5}^{n+3/2} Cr(G + v_{3}v_{j}) = \sum_{j=5}^{n} Cr(G + v_{3}v_{j})$$

$$\Rightarrow VCR(G_{v_{3}}) = \sum_{j=5}^{n} Cr(G + v_{3}v_{j})$$

$$+ \sum_{j=5}^{n} Cr(G + v_{3}v_{j}) + Cr\left(G + v_{3}v_{\frac{n+5}{2}}\right)$$

$$= \sum_{j=5}^{n+3/2} Cr(G + v_{3}v_{j}) + Cr\left(G + v_{3}v_{\frac{n+5}{2}}\right)$$

$$= 2\left(1 + 2 + 3 + \cdots + \frac{n-5}{2}\right) + \frac{n-3}{2}$$

$$= 2\left[\frac{1}{2}\left(\frac{n-5}{2}\right)\left(\frac{n-5}{2} + 1\right)\right] + \frac{n-3}{2}$$

$$= \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right) + \left(\frac{n+3}{2} - 3\right)$$

$$\Rightarrow VCR(G_{v_{3}}) = \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - 3\right|$$

Thus, $VCR(G_{v_i}) = \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - i\right|$, for i = 3. We inductively assume that the result holds for i = n - 1. That is,

$$VCR(G_{v_{n-1}}) = \sum_{j=3}^{n-3} Cr(G + v_{n-1}v_j)$$
$$= \left(\frac{n-3}{2}\right) \left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - (n-1)\right|$$

Let us prove the result for i = n.

By observing Fig. 3 and Fig. 4, we have,

$$Cr(G + v_n v_j) = Cr(G + v_{n-1}v_{j-1}), 4 \le j \le n - 2$$

$$E(G_{v_n}) = E(Pl_n) \cup \{v_n v_j \mid 3 \le j \le n - 2\}$$

$$VCR(G_{v_n}) = \sum_{j=3}^{n-2} Cr(G + v_n v_j)$$

$$= Cr(G + v_n v_3) + Cr(G + v_n v_4) + \cdots$$

$$+ Cr(G + v_n v_{n-2})$$

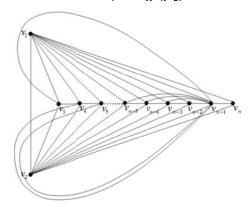


Fig 3. The Graph $G_{\nu_{n-1}}$ obtained from a Maximal Planar Graph Pl_n

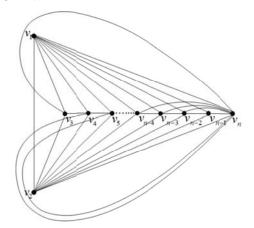


Fig 4. The Graph G_{v_n} obtained from a Maximal Planar Graph Pl_n

$$\Rightarrow VCR(G_{v_n}) = Cr(G + v_n v_3) + Cr(G + v_{n-1} v_3) + \cdots + Cr(G + v_{n-1} v_{n-3})$$

$$= 1 + \sum_{j=3}^{n-3} Cr(G + v_{n-1} v_j)$$

$$= 1 + \left(\frac{n-3}{2}\right) \left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - (n-1)\right|$$

$$= 1 + \left(\frac{n-3}{2}\right) \left(\frac{n-5}{2}\right) + (n-1) - \frac{n+3}{2}$$

$$= \left(\frac{n-3}{2}\right) \left(\frac{n-5}{2}\right) + n - \frac{n+3}{2}$$

$$VCR(G_{v_n}) = \left(\frac{n-3}{2}\right) \left(\frac{n-5}{2}\right) + \left|\frac{n+3}{2} - n\right|$$

Thus, the theorem is true for i = n. Hence, the theorem holds for $\forall i = 3, 4, ..., n$.

Corollary 2.3. For any odd value of $n \ge 5$,

$$\begin{split} &(i).VCR\big(G_{v_i}\big) = VCR\left(G_{v_{(n+3)-i}}\right), 3 \leq i \leq \frac{n+3}{2};\\ &(ii).VCR\big(G_{v_{i-1}}\big) = VCR\big(G_{v_i}\big) + 1, 4 \leq i \leq \frac{n+3}{2} \end{split}$$
 and

(iii).
$$VCR(G_{v_{i+1}}) = VCR(G_{v_i}) + 1, \frac{n+3}{2} \le i \le n-1.$$

Proof: It is easy to verify that, for any G_{v_i} : $3 \le i \le n$ obtained from Pl_n ,

$$VCr(G_{v_i}) = \sum_{j=3}^{i-2} Cr(G + v_i v_j) + \sum_{j=i+2}^{n} Cr(G + v_i v_j)$$

For any finite odd number $n \ge 5$, the minimum crossing number of a graph $G + v_i v_j$, corresponding to each pair v_i, v_j of non-adjacent vertices of Pl_n included in the set $\{(v_i, v_j) | i = 3, 4, ..., n - 2; j = i + 2, i + 3, ..., n\}$ is given in Table 1:

Hence, by observing each column in Table 1, the results hold for any odd $n \ge 5$.

Table 1. The Crossing Number of an Odd Order Graph $G + v_i v_j$ Corresponding to each Pair v_i , v_i of Non-adjacent Vertices of Pl_n

V_i	Vertices in	Vertices in P_{n-2}											
$v_i v_j$	v_3		$v_{(n+1)/2}$	$V_{(n+3)/2}$	$v_{(n+5)/2}$		v_{n-1}	V_n	$+v_iv_j$				
Edges incident with v _i	$v_{3}v_{5}$		$V_{(n+1)/2}V_{(n+5)/2}$	$V_{(n+3)/2}V_{(n+7)/2}$	$V_{(n+5)/2}V_{(n+9)/2}$		_	$v_n v_3$	1				
	$v_{3}v_{6}$		$V_{(n+1)/2}V_{(n+7)/2}$	$V_{(n+3)/2}V_{(n+9)/2}$	$v_{(n+5)/2}v_{(n+11)/2}$		$v_{n-1}v_{3}$	$v_n v_4$	2				
	v_3v_7		$V_{(n+1)/2}V_{(n+9)/2}$	$v_{(n+3)/2}v_{(n+1 \ 1)/2}$	$V_{(n+5)/2}V_{(n+13)/2}$		$v_{n-1}v_{3}$	$v_n v_5$	3				
	:		:	:	i i		:		:				
	$v_3v_{(n+1)/2}$		$v_{(n+1)/2}v_{n-2}$	$v_{(n+3)/2}v_{n-1}$	$V_{(n+5)/2}V_n$		$V_{n-1}V_{(n-5)/2}$	$v_n v_{(n-3)/2}$	$\frac{n-7}{2}$				
	$v_3v_{(n+3)/2}$		$V_{(n+1)/2}V_{n-1}$	$V_{(n+3)/2}V_n$			$V_{n-1}V_{(n-3)/2}$	$V_n V_{(n-1)/2}$	$\frac{n-5}{2}$				
	$v_3v_{(n+5)/2}$		$v_{(n+1)/2}v_n$	_	$V_{(n+5)/2}V_3$		$V_{n-1}V_{(n-1)/2}$	$V_n V_{(n+1)/2}$	$\frac{n-3}{2}$				
	$v_3v_{(n+7)/2}$		_	$V_{(n+3)/2}V_3$	$v_{(n+5)/2}v_4$		$V_{n-1}V_{(n+1)/2}$	$V_n V_{(n+3)/2}$	$\frac{n-5}{2}$				
	$v_3v_{(n+9)/2}$		$v_{(n+1)/2}v_3$	$V_{(n+3)/2}V_4$	$V_{(n+5)/2}V_5$		$V_{n-1}V_{(n+3)/2}$	$V_n V_{(n+5)/2}$	$\frac{n-7}{2}$				
			:	:					:				
	v_3v_{n-2}		$V_{(n+1)/2}V_{(n-7)/2}$	$V_{(n+3)/2}V_{(n-5)/2}$	$V_{(n+5)/2}V_{(n-3)/2}$		$v_{n-1}v_{n-5}$	$V_n V_{n-4}$	3				
	$v_3 v_{n-1}$		$V_{(n+1)/2}V_{(n-5)/2}$	$V_{(n+3)/2}V_{(n-3)/2}$	$V_{(n+5)/2}V_{(n-1)/2}$		$v_{n-1}v_{n-4}$	$V_n V_{n-3}$	2				
	v_3v_n		$V_{(n+1)/2}V_{(n-3)/2}$	$V_{(n+3)/2}V_{(n-1)/2}$	$V_{(n+5)/2}V_{(n+1)/2}$		$v_{n-1}v_{n-3}$	$V_n V_{n-2}$	1				

Table 2. The Crossing Number of an Even Order Graph $G + v_i v_j$ Corresponding to each Pair v_i, v_j of Non-adjacent Vertices of Pl_n

v_i	Vertices in P_{n-2}												
$v_i v_j$	v_3	<i>v</i> ₄		$V_{(n-2)/2}$	$v_{n/2}$	$v_{(n+2)/2}$		V_n	$v_i v_j$				
	$v_{3}v_{5}$	v_4v_6		$V_{(n-2)/2}V_{(n+2)/2}$	$V_{n/2}V_{(n+4)/2}$	$V_{(n+2)/2}V_{(n+6)/2}$		$v_n v_3$	1				
	$v_{3}v_{6}$	$v_4 v_7$		$V_{(n-2)/2}V_{(n+4)/2}$	$V_{n/2}V_{(n+6)/2}$	$V_{(n+2)/2}V_{(n+8)/2}$		V_nV_4	2				
	$v_3 v_7$	$v_4 v_8$		$V_{(n-2)/2}V_{(n+6)/2}$	$V_{n/2}V_{(n+8)/2}$	$v_{(n+2)/2}v_{(n+10)/2}$		$v_n v_5$	3				
	:	:		:	:	:		:	:				
Edges incident with v _i	$v_3v_{n/2}$	$v_4 v_{(n+2)/2}$		$V_{(n-2)/2}V_{n-4}$	$v_{n/2}v_{n-3}$	$v_{(n+2)/2}v_{n-2}$		$v_n v_{(n-4)/2}$	$\frac{n-8}{2}$				
	$v_3v_{(n+2)/2}$	$v_4v_{(n+4)/2}$		$V_{(n-2)/2}V_{n-3}$	$v_{n/2}v_{n-2}$	$v_{(n+2)/2}v_{n-1}$		$v_n v_{(n-2)/2}$	$\frac{n-6}{2}$				
	$v_3v_{(n+4)/2}$	$v_4 v_{(n+6)/2}$		$V_{(n-2)/2}V_{n-2}$	$V_{n/2}V_{n-1}$	$V_{(n+2)/2}V_n$		$v_n v_{n/2}$	$\frac{n-4}{2}$				
	$v_3v_{(n+6)/2}$	$v_4 v_{(n+8)/2}$		$V_{(n-2)/2}V_{n-1}$	$V_{n/2}V_n$	_		$V_n V_{(n+2)/2}$	$\frac{n-4}{2}$				
	$v_3v_{(n+8)/2}$	$v_4 v_{(n+10)/2}$		$V_{(n-2)/2}V_n$	_	$V_{(n+2)/2}V_3$		$V_n V_{(n+4)/2}$	$\frac{n-6}{2}$				
	$v_3v_{(n+10)/2}$	$v_4v_{(n+12)/2}$		-	$v_{n/2}v_3$	$v_{(n+2)/2}v_4$		$v_n v_{(n+6)/2}$	$\frac{n-8}{2}$				
	:	:		:		:		:	:				
	v_3v_{n-2}	$v_4 v_{n-1}$		$V_{(n-2)/2}V_{(n-1)/2}$	$V_{n/2}V_{(n-8)/2}$	$V_{(n+2)/2}V_{(n-6)/2}$		$V_n V_{n-4}$	3				
	$V_3 V_{n-1}$	V_4V_n		$V_{(n-2)/2}V_{(n-8)/2}$	$V_{n/2}V_{(n-6)/2}$	$V_{(n+2)/2}V_{(n-4)/2}$		$V_n V_{n-3}$	2				
	V_3V_n	_		$V_{(n-2)/2}V_{(n-6)/2}$	$V_{n/2}V_{(n-4)/2}$	$V_{(n+2)/2}V_{(n-2)/2}$		$V_n V_{n-2}$	1				

VCD(C	Vertices in P_{n-2}													
$VCR(G_{v_i,n})$		v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	
Vertex centered crossing number of G with respect to $\mathbf{v_i}$, for each $i=3,4,,n$	$VCR(G_{v_i,5})$	1	0	1										
	$VCR(G_{v_i,6})$	2	1	1	2									
	$VCR(G_{v_i,7})$	4	3	2	3	4								
	$VCR(G_{v_i,8})$	6	5	4	4	5	6							
	$VCR(G_{v_i,9})$	9	8	7	6	7	8	9						
	$VCR(G_{v_i,10})$	12	11	10	9	9	10	11	12					
	$VCR(G_{v_i,11})$	16	15	14	13	12	13	14	15	16				
	$VCR(G_{v_i,12})$	20	19	18	17	16	16	17	18	19	20			
	$VCR(G_{v_i,13})$	25	24	23	22	21	20	21	22	23	24	25		
	$VCR(G_{v_i,14})$	30	29	28	27	26	25	25	26	27	28	29	30	
Vert	:													

Table 3. The crossing number of a simple graph $G_{v_i,n}$: $3 \le i \le n$

Theorem 2.4. Let G be a maximal planar graph Pl_n , with even order $n \ge 6$. If G_{v_i} is a simple graph obtained by including the edges $\{v_i v_j \mid 3 \le j \le i - 2\} \cup \{v_i v_j \mid i + 2 \le j \le n\}$ to the graph G, then $VCR(G_{v_i}) = VCR(G_{v_{(n+3)-i}})$, $3 \le i \le \frac{n+2}{2}$.

Proof: Let $n \ge 6$ be any arbitrary even integer. We prove the result by induction on i. In basis, we prove the result for i = 3. From Table 2, it can be observed that,

$$\begin{split} &Cr\big(G+v_3v_j\big) = Cr\big(G+v_nv_{j-2}\big), 5 \leq j \leq n \\ &\Rightarrow VCR\big(G_{v_3}\big) = \sum_{j=5}^n Cr\big(G+v_3v_j\big) \\ &= Cr(G+v_3v_5) + Cr(G+v_3v_6) + \cdots \\ &\quad + Cr(G+v_3v_n) \\ &= Cr(G+v_nv_3) + Cr(G+v_nv_4) + \cdots \\ &\quad + Cr(G+v_nv_{n-2}) \qquad (from \ (1)) \\ &= \sum_{j=3}^{n-2} Cr\big(G+v_nv_j\big) \end{split}$$

$$= VCR(G_{v_n})$$

Hence, $VCR(G_{v_i}) = VCR(G_{v_{(n+3)-i}})$, for i = 3. Let us assume that the result is true for $i = \frac{n}{2}$. That is,

$$VCR\left(G_{\nu_{\underline{n}}}\right) = VCR\left(G_{\nu_{(n+3)-\underline{n}}}\right) = VCR\left(G_{\nu_{\underline{n+6}}}\right) (2)$$

Now, we prove the result for $i = \frac{n+2}{2}$. From Table 2, we can observe that,

$$\sum_{j=n+4/2}^{n-1} Cr\left(G + v_{\underline{n}}v_{j}\right)$$

$$= \sum_{j=n+6/2}^{n} Cr\left(G + v_{\underline{n+2}}v_{j}\right);$$

$$\sum_{j=3}^{n-4/2} Cr\left(G + v_{\underline{n}}v_{j}\right) = \sum_{j=4}^{n-2/2} Cr\left(G + v_{\underline{n+2}}v_{j}\right)$$

$$\Rightarrow VCr\left(G_{v_{\underline{n}}}\right) = \sum_{j=3}^{n-4/2} Cr\left(G + v_{\underline{n}}v_{j}\right) \\ + \sum_{j=n+4/2} Cr\left(G + v_{\underline{n}}v_{j}\right) \\ = \sum_{j=4}^{n-2/2} Cr\left(G + v_{\underline{n+2}}v_{j}\right) + \sum_{j=n+6/2}^{n} Cr\left(G + v_{\underline{n+2}}v_{j}\right) \\ + Cr\left(G + v_{\underline{n}}v_{n}\right) \\ = VCR\left(G_{v_{\underline{n+2}}}\right) - Cr\left(G + v_{\underline{n+2}}v_{3}\right) + \frac{n-4}{2} \\ = VCR\left(G_{v_{\underline{n+2}}}\right) - \frac{n-6}{2} + \frac{n-4}{2} \\ \Rightarrow VCR\left(G_{v_{\underline{n+2}}}\right) = VCR\left(G_{v_{\underline{n+2}}}\right) + 1$$
 (3)

Similarly,
$$VCR\left(G_{v_{\frac{n+6}{2}}}\right) = VCR\left(G_{v_{\frac{n+4}{2}}}\right) + 1$$
 (4)

By substituting the equations (3) and (4) in equation (2), we obtain,

$$\begin{split} &VCR\left(G_{v_{\underline{n+2}}}\right) + 1 = VCR\left(G_{v_{\underline{n+4}}}\right) + 1\\ &\Rightarrow VCR\left(G_{v_{\underline{n+2}}}\right) = VCR\left(G_{v_{\underline{n+4}}}\right)\\ &\text{Therefore, } &VCR(G_{v_i}) = VCR(G_{v_{(n+3)-i}}), \text{ for } i = \frac{n+2}{2}. \end{split}$$
 Thus, the theorem holds for $\forall i = 3, 4, \dots, \frac{n+2}{2}.$

Theorem 2.5. If G is a maximal planar graph Pl_n , with even order $n \ge 6$, and the simple graph G_{v_i} is obtained from G by joining all its vertices to a vertex $v_i \in G$ that are not adjacent to $v_i \in G$, then the vertex centered crossing number of a graph G with respect to v_i , for each i = 3, 4, ..., n is given by,

$$\begin{split} &VCR\left(G_{v_{i}}\right) \\ &= \begin{cases} \left(\frac{n-4}{2}\right)^{2} + \left(\frac{n+2}{2}-i\right), \quad 3 \leq i \leq \frac{n}{2}; \\ \left(\frac{n-4}{2}\right)^{2}, \qquad \qquad i = \frac{n+2}{2}, \frac{n+4}{2}; \\ \left(\frac{n-4}{2}\right)^{2} + \left(i - \frac{n+4}{2}\right), \frac{n+6}{2} \leq i \leq n. \end{split}$$

Proof: Let G be a maximal planar graph Pl_n , with even order $n \ge 6$.

Claim:
$$VCR(G_{v_{i+1}}) = VCR(G_{v_i}) - 1, 3 \le i \le \frac{n}{2}$$

We prove the result by induction on i.

The inductive basis, i = 3.

From Table 2, we have,

$$\sum_{j=5}^{n-1} Cr(G + v_3 v_j) = \sum_{j=6}^{n} Cr(G + v_4 v_j)$$

$$\Rightarrow VCR(G_{v_3}) = \sum_{j=5}^{n-1} Cr(G + v_3 v_j) + Cr(G + v_3 v_n)$$

$$= \sum_{j=6}^{n} Cr(G + v_4 v_j) + 1 = VCR(G_{v_4}) + 1$$

$$\Rightarrow VCR(G_{v_4}) = VCR(G_{v_3}) - 1$$

Hence the claim is verified for i = 3. We inductively assume that, the result holds for $i = \frac{n-2}{2}$.

That is,
$$VCR\left(G_{v_{\underline{n}}}\right) = VCR\left(G_{v_{\underline{n-2}}}\right) - 1$$
 (1)

Let us prove the result for $i = \frac{n}{2}$. From Table 2, we observe that,

$$\begin{split} \sum_{j=n+2/2}^{n-2} Cr\left(G + v_{\frac{n-2}{2}}v_{j}\right) &= \sum_{j=n+6/2}^{n} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right); \\ \sum_{n-6/2} \sum_{j=3}^{n-6/2} Cr\left(G + v_{\frac{n-2}{2}}v_{j}\right) &= \sum_{j=5}^{n} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ \Rightarrow VCR\left(G_{v_{\frac{n-2}{2}}}\right) &= \sum_{j=3}^{n-6/2} Cr\left(G + v_{\frac{n-2}{2}}v_{j}\right) \\ &+ \sum_{j=n+2/2}^{n} Cr\left(G + v_{\frac{n-2}{2}}v_{j}\right) \\ &= \sum_{j=5}^{n-2/2} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ &+ \sum_{j=n+6/2}^{n} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ &+ Cr\left(G + v_{\frac{n-2}{2}}v_{n-1}\right) + Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ &+ \sum_{j=n+6/2}^{n-2/2} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ &+ \sum_{j=n+6/2}^{n-2/2} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ &+ \frac{n-4}{2} + Cr\left(G + v_{\frac{n+2}{2}}v_{3}\right) \end{split}$$

$$= \sum_{j=3}^{n-2/2} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ + \sum_{j=n+6/2}^{n} Cr\left(G + v_{\frac{n+2}{2}}v_{j}\right) \\ + \frac{n-4}{2} - Cr\left(G + v_{\frac{n+2}{2}}v_{4}\right) \\ = VCR\left(G_{v_{\frac{n+2}{2}}}\right) + \frac{n-4}{2} - \frac{n-8}{2} \\ \Rightarrow VCR\left(G_{v_{\frac{n-2}{2}}}\right) = VCR\left(G_{v_{\frac{n+2}{2}}}\right) + 2$$
 (2)

 $VCR\left(G_{v_{\underline{n}}}\right) = VCR\left(G_{v_{\underline{n+2}}}\right) + 2 - 1$ $VCR\left(G_{v_{\underline{n+2}}}\right) + 4 - 1$

$$\Rightarrow VCR\left(G_{v_{\underline{n}}}\right) = VCR\left(G_{v_{\underline{n+2}}}\right) + 1$$

By substituting (2) in (1), we get,

$$\Rightarrow VCR\left(G_{v_{\underline{n+2}}}\right) = VCR\left(G_{v_{\underline{n}}}\right) - 1$$

$$\Rightarrow VCR(G_{v_{i+1}}) = VCR(G_{v_i}) - 1, \text{ for } i = \frac{n}{2}.$$
Thus, $VCR(G_{v_{i+1}}) = VCR(G_{v_i}) - 1$, holds for $3 \le i \le \frac{n}{2}$ (3)

Similarly, we can prove that,

$$VCR(G_{v_{i+1}}) = VCR(G_{v_i}) + 1, \frac{n+4}{2} \le i \le n-1$$
 (4)

To find $VCR(G_{v_3})$:

$$VCR(G_{v_3}) = \sum_{j=5}^{n} Cr(G + v_3 v_j)$$

$$= \sum_{j=5}^{n+4/2} Cr(G + v_3 v_j) + \sum_{j=n+6/2}^{n} Cr(G + v_3 v_j)$$

$$= 2\left(1 + 2 + 3 + \dots + \frac{n-4}{2}\right)$$

$$= 2\left[\frac{1}{2}\left(\frac{n-4}{2}\right)\left(\frac{n-4}{2} + 1\right)\right]$$

$$= \left(\frac{n-4}{2}\right)^2 + \frac{n-4}{2}$$

$$\Rightarrow VCR(G_{v_3}) = \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+2}{2} - 3\right)$$

From equation (3), we obtain,

$$VCR(G_{v_4}) = \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+2}{2} - 4\right)$$

$$VCR(G_{v_5}) = \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+2}{2} - 5\right)$$
...
$$VCR\left(G_{v_{\frac{n}{2}}}\right) = \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+2}{2} - \frac{n}{2}\right)$$

$$VCR\left(G_{v_{\frac{n+2}{2}}}\right) = \left(\frac{n-4}{2}\right)^2$$

$$VCR\left(G_{v_{\frac{n+2}{2}}}\right) = \left(\frac{n-4}{2}\right)^2$$
(5)

Also, by the previous theorem, we have,

$$VCR(G_{v_i}) = VCR(G_{v_{(n+3)-i}}), 3 \le i \le \frac{n+2}{2}$$
 (6)

By substituting $i = \frac{n+2}{2}$ in Equation (6) we can arrive.

$$\begin{aligned} &VCR\left(G_{v_{\underline{n+2}}}\right) = VCR\left(G_{v_{(n+3)} - \frac{n+2}{2}}\right) \\ &VCR\left(G_{v_{\underline{n+2}}}\right) = VCR\left(G_{v_{\underline{n+4}}}\right) = \left(\frac{n-4}{2}\right)^2 \end{aligned} \tag{7}$$

Also, from Equation (4), we get,

$$VCR\left(G_{v_{\frac{n+6}{2}}}\right) = VCR\left(G_{v_{\frac{n+4}{2}}}\right) + 1$$

$$= \left(\frac{n-4}{2}\right)^2 + 1 = \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+6}{2} - \frac{n+4}{2}\right)$$

$$VCR\left(G_{v_{\frac{n+8}{2}}}\right) = VCR\left(G_{v_{\frac{n+6}{2}}}\right) + 1$$

$$= \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+8}{2} - \frac{n+4}{2}\right)$$

$$VCR\left(G_{v_{\frac{n+10}{2}}}\right) = VCR\left(G_{v_{\frac{n+8}{2}}}\right) + 1$$

$$= \left(\frac{n-4}{2}\right)^2 + \left(\frac{n+10}{2} - \frac{n+4}{2}\right)$$

$$VCR(G_{v_n}) = VCR(G_{v_{n-1}}) + 1$$

$$= \left(\frac{n-4}{2}\right)^2 + \left(n - \frac{n+4}{2}\right)$$

$$(8)$$

Thus, from all the above equations included in (5), (7) and (8), we conclude that, for any arbitrary even number $n \ge 6$, the vertex centered crossing number of a simple graph G with respect to v_i , for each i = 3, 4, ..., n is given by,

$$\begin{split} &VCR\!\left(G_{v_{i}}\right) \\ &= \left\{ \begin{array}{l} \left(\frac{n-4}{2}\right)^{2} + \left(\frac{n+2}{2} - i\right), 3 \leq i \leq \frac{n}{2}; \\ \left(\frac{n-4}{2}\right)^{2}, & i = \frac{n+2}{2}, \frac{n+4}{2}; \\ \left(\frac{n-4}{2}\right)^{2} + \left(i - \frac{n+4}{2}\right), \frac{n+6}{2} \leq i \leq n. \end{split} \right. \end{split}$$

Theorem 2.6.
$$VCR(G_{v_3,n-1}) = VCR(G_{v_i,n})$$
, for

$$i = \begin{cases} \frac{n+2}{2}, \frac{n+4}{2}, & \textit{when n is even;} \\ \frac{n+3}{2}, & \textit{when n is odd.} \end{cases}$$

Proof: Let $n \ge 5$ be any arbitrary integer.

Let $G_{v_3,n-1}$ be a simple graph obtained from a maximal planar graph Pl_{n-1} , by adding pair-wise non-crossing edges $\{v_3v_i | 5 \le j \le n-1\}$, that are not incident with a vertex $v_3 \in V(Pl_{n-1})$.

Let $G_{v_i,n}$ be a simple graph arrived from a maximal planar graph Pl_n , by including the edges $\{v_i v_i \mid 3 \le j \le i - 2\} \cup \{v_i v_i \mid i + 2 \le j \le n\}$ which are pair-wise non-crossing, in any of its good

Case (i): n is even.

Thus, from previous theorem, for $i = \frac{n+2}{2}, \frac{n+4}{2}$

$$VCR\left(G_{v_{\frac{n+2}{2},n}}\right) = VCR\left(G_{v_{\frac{n+4}{2},n}}\right) = \left(\frac{n-4}{2}\right)^2$$

Clearly, n-1 is odd. Thus by Theorem 2.1, we get,

$$VCR(G_{v_{3,n-1}}) = \left(\frac{(n-1)-3}{2}\right) \left(\frac{(n-1)-5}{2}\right) + \left(\frac{(n-1)+3}{2}-3\right)$$

$$= \left(\frac{n-4}{2}\right) \left(\frac{n-6}{2}\right) + \left(\frac{n-4}{2}\right)$$

$$= \left(\frac{n-4}{2}\right) \left(\frac{n-6}{2}+1\right)$$

$$= \left(\frac{n-4}{2}\right)^2$$

Thus for any even n,

$$VCR(G_{v_{3,n-1}}) = VCR(G_{v_{i,n}}), \text{ for } i = \frac{n+2}{2}, \frac{n+4}{2}.$$

Case (ii): *n* is odd.

Then, the vertex centered crossing number of a graph G of order n with respect to a vertex $v_{\underline{n+3}} \in$ V(G) will be,

$$VCR\left(G_{\nu_{n+3}\over 2},n}\right) = \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right)$$

$$+\left|\frac{n+3}{2} - \frac{n+3}{2}\right|$$

$$= \left(\frac{n-3}{2}\right)\left(\frac{n-5}{2}\right)$$
Here n is odd $\Rightarrow n-1$ is even

Here, *n* is odd \Rightarrow *n* – 1 is even.

Then by the previous theorem, we have,

$$VCR(G_{v_{3,n-1}}) = \left(\frac{(n-1)-4}{2}\right)^{2} + \left(\frac{(n-1)+2}{2}-3\right)$$

$$= \left(\frac{n-5}{2}\right)^{2} + \left(\frac{n-5}{2}\right)$$

$$= \left(\frac{n-5}{2}\right)\left(\frac{n-5}{2}+1\right)$$

$$= \left(\frac{n-5}{2}\right)\left(\frac{n-3}{2}\right)$$

Hence, for any odd n, we have,

$$VCR\left(G_{v_{3,n-1}}\right) = VCR\left(G_{v_{\frac{n+3}{2},n}}\right)$$

Thus the proof obtained can be tabulated as follows:

Hence, the vertex centered crossing number of Pl_{n-1} with respect to the vertices $v_3, v_{n-1} \in$ $V(Pl_{n-1})$ are identical with that of Pl_n with respect to $v_i \in V(Pl_n)$, where i takes the median value from 3 to n.

References

Baskar Babujee, J. (2003). Planar Graphs with Maximum Edges-Antimagic Property. The Mathematics Education, 37(4), 194-198.

Parthasarathy, K. R. (1994). Basic Graph Theory. Tata McGraw-Hill Publishing Company Lt., New Delhi.

Cabello, S., & Bojan M. (2010). Adding One Edge to Planar Graphs Makes Crossing Number Hard. Proc. SoCG 2010, 68-76.