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Abstract 

This paper presents some results concerning the existence of solutions for a functional integral equation of 
Volterra type in two variables, via measure of noncompactness. Two examples are included to illustrate the main 
result. 
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1. Introduction 

Recently measures of noncompactness have been 
successfully applied to investigate the solvability 
and behavior of solutions of a large variety of 
integral equations (Aghajani et al., 2011; Banas et 
al, 2008; Benchohra, 2012; Darwish et al., 2011). 
Banas and Dhage (2008), Banas and Rzepka 
(2003), Hu and Yan (2006), Liu and Kang (2007) 
and Liu et al. (2012) studied the existence and 
behavior of solutions of integral equation of 
Volterra type on unbounded interval in one variable 
and Aghajani and Jalilian (2011) extended many of 
the above results by considering the following 
integral equation in general form 
 

(t)

0
(t) f(t, x( (t)), (t,s, x( (s)))ds)x g


    

 
on (R )BC  . Moreover, many authors studied 

the existence of solutions for systems of integral 
equations of Volterra type in one variable on 
unbounded intervals (Aghajani et al., 2011; 
Olszowy, 2009). Li, Gao and Peng in (2012) 
studied the existence of mild solutions for a class of 
semilinear fractional differential equations with 
nonlocal conditions in Banach spaces. Benchohra 
and Seba (2012) studied the existence of solutions 
for an integral equation of fractional order with 
multiple time delays in Banach spaces, and M. 
Mursaleen and A. Mohiuddine in (2012) applied the 
technique of measures of noncompactness to the 
theory of infinite system of differential equations in 
the Banach sequence spaces ℓ (1 p )   . 
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In this paper, we study the existence of solutions 
for the following functional integral equation in two 
variables 
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  (1) 
 
where , , , ,i i i if g     and i  satisfy some 

certain conditions, using the technic of measure of 
noncom- pactness. 

The first measure of noncompactness was defined 
by Kuratowski (1930). For a bounded subset S of a 
metric space X, the Kuratowski measure of 
noncom- pactness is defined as 
 

1(S) : inf

(S ) 1

n

i i
i

i

S S for some S with

diam for i n






 
       

        


 

 where  diam T  denotes the diameter of a set 

T  X , namely 

 diam(T) := sup{d(x, y)|x, y  T}.
  

Here, we recall some basic facts concerning 
measures of noncompactness from (Banas, 1980), 
which is defined axiomatically in terms of some 
natural conditions. Denote by R  the set of real 

numbers and put R [0, )   . Let (E, . )  be a 

Banach space. The symbol X , ConvX will 
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denote the closure and closed convex hull of a 

subset X  of  E, respectively. Moreover, let EM  

indicate the family of all nonempty and bounded 

subsets of  E and EN  indicate the family of all 

nonempty and relatively compact subsets. 
 

Definition 1.1. A mapping : RE M  is said 

to be a measure of noncompactness in E if it 
satisfies the following conditions. 

1  The family = { : ( ) = 0}EKer X X M  

is nonempty and Ker E N . 

2 ( ) ( )X Y X Y    , 

3  ( ) = ( )X X  , 

4  ( ) = ( ),ConvX X   

5 ( (1 ) ) ( ) (1 ) ( )X Y X Y           

for   [0,1] , 

6  If { }nX  is a sequence of closed sets from 

EM  such that 1n nX X   for 1, 2,...n   and if

lim
n

 ( ) = 0nX , then
 
ܺஶ ൌ ⋂ ܺ ് ஶ

ୀଵ . 

In 1955, Darbo published the following fixed 
point theorem, using the concept of measures of 
noncompactness, which guarantees the existence of 
fixed point for condensing operators. 
 
Theorem 1.1. (Darbo, 1955) Let   be a nonemp- 
ty, bounded, closed, and convex subset of a Banach 
space E  and let :F   be a continuous 
mapping such that there exists a constant 

[0,1)k   with the property 
 

( ( )) ( )F X k X                                          (2) 

 
for any X  . Then F has a fixed point in the 

set  . 

Now let (R R )BC    be the Banach space of 

all bounded and continuous functions on R R 
equi- pped with the standard norm  
 

 = sup ( , ) : , 0x x t s t s  . 

 
For any nonempty bounded subset X  of 

(RBC  R ) , , > 0x X L   and 0,   let
 

 
( , ) ( , ) :

( , ) = sup ,
, , , 0, , ,

L
x t s x u v

x
t s u v L t u v s

 
 

  
 

      

 ( , ) = sup ( , ) : ,L LX x x X      

0
0

( ) = ( , ),lim
L LX X


  


 

0 0
L

( ) = ( )lim
LX X 



( , ) = { ( , ) : },X t s x t s x X  
and 
 

0
,

( ) = ( ) ( , ),limsup
t s

X X diamX t s 


       (3) 

 
where  

 
0 ,,

( , ) : inf (sup ( , ))limsup
T s t Tt s

diamX t s diamX t s
 


 

 Similar to (Banas et al.,2003) (cf. also (Banas et 
al, 2009)), it can be shown that the function   is a 

measure of noncompactness in the space 

(RBC  R ) (in the sense of Definition 1.1). 

The rest of the paper is organized as follows: In 
Section 2, we present an extension of Darbo fixed 
point theorem and state our main results concerning 
the existence of solutions of the integral equation 
(1). In Section 3, we provide two examples to show 
the usefulness and applicability of main results. 

2. Main results 

In this section, we study the functional integral 
equation (1) with the following conditions: 

i.
 

, , , : R Ri i i i      (i 1,2,3)  are 

continuous and (t)i   as t   (i 1,2) . 

ii.
 

: R Rf R R R R       is continuous. 

Moreover, there exist a constant [0,1)k   and 

nondecreasing continuous functions
 1 2, : R R    

with (0) 0i   (i 1,2)  such that 

| (t,s, x, y, v) f(t,s,u,z, w) |f    
 

1 1

2 2

| x u | (m (t,s) | y z |)

(m (t,s) | v |)

k

w

  
 

                        (4) 

 
where : R R Rim    

 
(i 1,2)  are 

continuous functions. 

iii.
 

: sup{| (t,s,0,0,0) |: t,s }M f R     

iv. 1g : R R R R R R         is 

continuous and 
 

2 1

1
(s) (t)

11 0 0
1

2
m (t,s) :

: su

(t

p

, ,

,s, v, w,

x( (v), (w)))

R R( )

g

D
dvdw

t s R x BC

 
 

 

 
 
    
 
   

  .      (5) 



 
 
 
3                    IJST (2014) 38A1: 1-8 

 
Further, 
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g
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uniformly with respect to , (R R )x y BC    . 

v. 2g : R R R R R       is continuous and 
 

3 (

2
0

2 1

t 2)

2m (t, s) :
: sup .

, , ( )

(t,s, v,

x( (v), (s)))

R R R

g

D dv

t s x BC



 

  

 
 

   
    

   (6) 

 
Moreover, 
 

3 2 1 2(t

,
1 2

2

2

)

0

(t,s, v, x( (v), (s))
lim m

)

(t,s, v, y( (v), (s)))
(t,s) 0

t s

g

g dv

  

  
  

 
uniformly with respect to , (R R )x y BC    . 

Before we discuss the existence of solutions for the 
functional integral equation (1) and prove the main 
theorem, let us provide some auxiliary lemmas in 
this respect. 
 
Lemma 2.1. Let C  be a nonempty, bounded, 

closed and convex subset of a Banach space E  
and let :F C E  be an operator such that 
 

F(x) (y)F k x y                                 (7)  
 
where [0,1)k  . Assume that :iG C E
(i 1,2,

 
..., n)  are compact and continuous 

operators and T :C C is an operator such that  
 

 
1

(x) T(y) F(x) (y) G (x) (y)
n

i i i
i

T F G


         (8) 

 
where : R Ri     are nondecreasing 

continuous functions and (0) 0i  
(i 1,2,..., n) . Then T has a fixed point. 

 
Proof: Let X  be an arbitrary subset of C . By the 
definition of Kuratowski measure of noncompac- 

tness, for every 0   there exist 1 2, ,..., mS S S

such that 
1

i m

ki
X S




 , 

 
( ( )) (F(X))kdiam F S     

 
and 

 
(G ( ))i kdiam S   

 
for 1,2,...,i n . Let us fix arbitrarily 

1 .k m   Then by (8) and properties of i we 

obtain 
 

(T( ))kdiam S   

1

( ( )) ( (G ( )))
n

k i i k
i

diam F S diam S


    

1

(F(X)) ( ),
n

i
i

  


    

 
and since  is an arbitrarily positive number and 

i are nondecreasing continuous functions, it 

concludes that 
 

(T(X)) (F(X))  .                                       (9) 
 

Now, we show that T satisfies (2). To do this, fix 
arbitrary ,x y X then we have 
 

(x) F(y)

X

F k x y

k diam

  

 
 

 
So 
 

(F(X)) Xdiam k diam  , 
 
which gives 
 

(F(X)) (X)k  .                                        (10) 
 
From (7) and (10) we deduce that 
 

(T(X)) (X)k   
 

Also, from (8), T is a continuous operator and the 
application of Theorem 1.1 completes the proof. 
 

Lemma 2.2. Assume that
 1g satisfies the 

hypothesis iv, then
 1 : (R R ) (R R )G BC BC       

defined by 
 

2 1

1

(s) (t)

1 10

1

20

(x)(t, s)

(t, s, v, w, x( (v), (w)

m (

))

t,s)

g d

G

vdw
 

 



 
   (11)

 

 
is a compact and continuous operator. 
 

Proof: Obviously, 1(x)(t,s)G for any 

(Rx BC  R ) is continuous on R R   

and by (5), 1G  is a self operator on 
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(R R )BC   . Now we show that 1G is 

continuous. To verify this, take (Rx BC  
R )  and 0   arbitrarily. Moreover, take y 

(R R )BC    with x y   . Then we have 
 

1 1| G (x)(t,s) G (y)(t,s) |   

2 1

2 1

(s) (t) 1

0 0

(

1

1 2

1

1 2

s) (t) 1

0 0

(t,s, v, w,
m (t,s)

x( (v), (w)))

(t,s, v, w,
m (t,s)

y( (v), (w)))

g

dvdw

g

dvdw

 

 

 

 





 

 
 (12)

 

2 1(s) (t) 1

0
1

1
1

1 2
0

2(t, s, v, w, x( (v), (w)))
m (t,s)

(t,s, v, w, y( (v), (w)))

g

g dvdw

   

    

 
This result together condition (iii) imply that 

there exists 0T   such that for ,t s T  we have 

 
1 1| G (x)(t,s) G (y)(t,s) |   , 

 
and if , [0,T]t s  , then the inequality in (12) 

follows that 
 

2
1 1 1,| G (x)(t,s) G (y)(t,s) | ( )T T Tm     , 

 
where 
 

1, 1

1 2

sup{ (t) : t [0,T],1 i 3},

m sup{m (t,s) : t,s [0,T]},

| g (t,s, v, w, x) g (t,s, v, w, y) |:

( ) sup t,s [0,T], v, w [0, ], ,

x, y [ b, b],| x y |

T i

T

T T

 

  


   
 

 
    
     

 

 

with b x   . By using the continuity of 1g
on the compact set 

[0,T] [0,T] [0, ] [0, ]T T     [ b,b] , we 

have ( ) 0T   as 0  . Thus, 1G  is a 

continuous function on (R R ).BC    To 

complete the proof we need to verify that 1G  is a 

compact operator.  Let X be a nonempty and 

bounded subset of  (R R )BC   , and assume 

that T > 0 and 0   are arbitrary constants. Then 

for x X  and 1 2 1 2, , , [0,T]t t s s  , with 

1 2| |t t    and 1 2| s |s    we have 

1 1 1 1 2 2| G (x)(t ,s ) G (x)(t ,s ) |   

22 1

122

2

2

(s ) (t ) 1 2 2

1 2 2

1 2

1 1

1 2 2

1

0 0

(s ) (t 1

0
2

)

0

(t , s , v, w,
m (t ,s )

x( (v), (w)))

(t ,s , v, w,
m (t ,s )

x( (v), (w)))

g

dvdw

g

dvdw

 

 

 

 


 

 
2 2

2

2 1

2 1 1

(s ) (t ) 1

0 0

(s ) (

1 1

1 2 2

1 2

t ) 1 1

0 0

1

1 2 2

1 2

(t , s , v, w,
m (t ,s )

x( (v), (w)))

(t ,s , v, w,
m (t ,s )

x( (v), (w)))

g

dvdw

g

dvdw

 

 

 

 





 

 
22 1 1

2 1 11

(s ) (t ) 1

0 0

(s ) (t

1 1

1 2 2

1 2

1 1

1 1 1

1 2

) 1

0 0

(t ,s , v, w,
m (t ,s )

x( (v), (w)))

(t ,s , v, w,
m (t ,s )

x( (v), (w)))

g

dvdw

g

dvdw

 

 

 

 

 



 

 

2 22 1

2 2 1 2

1, 1 1

1
(s ) (t )

10 20 1

(t ,s , v, w, x( (v), (w)))

(t , s , v, w, x( (v), (w)))T
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g
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2 1

1

2 2

1

(s ) (t )
1

0

1 1 1

t

2

(1 ),

(t ,s , v, w, x( (v), (w)))
m T

g
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1

2

1

2 11(s ) (t )
1

(s ) 0

1 1 1 2
1,

(t ,s , v, w, x( (v), (w)))
m T

g

dvdw

 



 
  

1 1
1,

2

(g , ) U ( , )
.

U ( , )

T T T
T r r

T T T T
r

m
     


  

 
   

     (13) 

 
where 
 

1 1 1

1 2 2

1 1 2 1 2

1 2 1 2

1

sup{|| x ||: x X},

g (t ,s , v, w, x)
:

g (t ,s , v, w, x)

(g , ) sup ,t , t ,s ,s [0,T],

| t t | ,| s | ,

, [0, ], x [ , ]

| (a) (b) |:
( , ) sup ,

a,b [0,T],| a b |

| g (t
U sup

T
r

T

i iT
i

T
r

r

s

v w r r

 
 


 
  



 

 
     
     
    

 
     


,s, v, w, x) |: t,s [0,T],

.
, [0, ], x [ , ]Tv w r r

 
    

 

 
Since x was an arbitrary element of X  in (13), 

we obtain 
 

1

1 1, 1

2

(g , )

(G (X), ) U ( , ) .

U ( , )

T
T r

T T T
T T r

T T
r

m

  

     

  

 
 

  
  

 



 
 
 
5                    IJST (2014) 38A1: 1-8 

 
On the other hand, by the uniform continuity of 

1g  and i  on the compact sets 

[0,T] [0,T] [0, ]T   [0, ] [ r, r]T    and 

[0,T] , respectively, we have 1(g , ) 0T
r    

and ( , ) 0T i     as 0  . Therefore, we 

obtain 0 1(G (X), ) 0T   , which gives 
 

0 1(G (X)) 0.                                                 (14) 
 

Moreover, for arbitrary ,x y X and 

, Rt s   we have the following estimate 
 

1 1| G (x)(t,s) G (y)(t,s) | 
  

 

2 1

1
(s) (t)

10

1

1 1 20

2(t,s, v, w, x( (v), (w)))

m (t,s) (t,s, v, w, y( (v), (w)))

g

g

dvdw

 
 

     

1, (t,s)Tm  ,  
 
where 
 

2 1

1
(s) (t

1
)

10 0

2

1 2

(t,s, v, w, x( (v), (w)))

:(t,s, v, w, y( (v), (w)))
(t,s) sup

x, y (R R )BC

g

g

dvdw

 
 

 

 

 
 

   
 
   

   

 
Thus, we obtain 
 

1 1,(X)(t,s) (t,s)Tdiam G m   .                    (15) 
 

Taking ,t s   in the inequality (15), then 

using (iv) we arrive at 
 

1
,

( )( , ) 0limsup
t s

diam G X t s


   .                    (16) 

 
Further, combining (14) and (16) we get 

 

1 0 1
,

( )( , ) (G (X)) 0limsup
t s

diam G X t s 


    . (17) 

 
or, equivalently 
 

1(G (X)) 0  . 
 

So, it is a
 1G compact operator and the proof is 

complete.  
 

Lemma 2.3. Assume that 2g  satisfies the 

hypothesis (v), then 
2 : (R R ) (R R )G BC BC       

defin- ed by 

 
3 (t)

2 1 202 2(x)(t,s) (t,s, v, x( (v), (s)))m (t,s) g dvG


    (18)
 

 
is a compact and continuous operator. 
 

Proof: Obviously, for any (R R )x BC    , 

2G (x)(t,s) is a continuous function and by (6), 

2G  is a self operator on (R R )BC   . Similar 

to the proof of Lemma 2.2 we deduce that 2G  is 

continuous, 
 

 2 2, 2 3(G (X), ) (g , ) ( , ) .T T T T
T T r rm V          

 
and 
 

2 2,(X)(t,s) (t,s)Tdiam G m 
                    (19)

 

 
where 
 

2, 2

2 1 1 2 2 2

1 2 1 2
2

1 2 1 2

2

m sup{m (t,s) : t,s [0,T]},

| g (t ,s , v, x) g (t ,s , v, x) |:

t , t ,s ,s [0,T],
(g , ) sup

| t t | ,| s | ,

[0, ], x [ , ]

| g (t,s, v, x) |: t,s [0,T],
sup ,

[0, ], x [ , ]

T

T
r

T

T
r

T

s

v r r

V
v r r

 
 





 

 
        
    

 
     

3 2 1 2

2

(t

2
0

1

) (t,s, v, x( (v), (s)))
:

(t,s) sup (t,s, v, y( (v), (s)))

x, y (R )BC R

g

g dv

  
  

 

 
 

  
   

  

 

and 3, ( , )Tr     are as defined in the proof of 

Lemma 2.2. So by the uniform continuity of 2g  

and 3  on the compact sets

[0,T] [0,T] [0, ]T   [0, ] [ r, r]T    and 

[0,T] , respectively, we obtain 2(g , ) 0T
r    

and 3( , ) 0T    as 0  , gives 
 

0 2(G (X)) 0.   
 

Also, taking ,t s   in the inequality (18), 

then using (v) we arrive at 
 

2
,

( )( , ) 0limsup
t s

diam G X t s


  .                    (20) 

 
Thus, 
 

2(G (X)) 0  . 
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So, it is a 2G compact operator and the proof is 

complete.  
Now we are in a position to present the main 

result of this paper. 
 
Theorem 2.4. Under the assumptions (i)-(v), Eq. 

(1) has at least one solution in (R R )BC   . 

 
Proof: Define the operators , : (R R )F T BC  

(R R )BC     by the formulas 
 

(x)(t,s) x(t,s)F   
 
and 
 

2 1

3

1 2

(s) (t) 1

0 0

(t

1

2

2 2

)

0 1

(t,s, v, w, x( (v)

, (w)))

(t,s, v, x( (v)

, , ( (t), (s)),

( )

, (s) )

(t,s ,

)

)

t s x

g
T x f

dvdw

g dv

 




 



 

 
 
 
 
 
 
 
 

 



      (21) 

 
Using conditions (i)-(iv), for arbitrarily fixed 

Rt   we have 
 
| T(x)(t,s) |  

f(t,s, x(t,s)A,B) f(t,s,0,0,0) | f(t,s,0,0,0) |  

k | x(t,s) | | f(t,s,0,0,0) |  

2 1(s

1 1

1 2

) (t) 1

0 0

(t,s, v, w,
m (t,s)

x( (v), (w)))

g

dvdw

 

 

 
   

 
   

3

2 1 2

(t)

0 1 2(m (t,s) | (t,s, v, x( (v), (s))) |)g dv


    

 
where 
 

2 1

3

(s) (t)

10 0

(t)

0

1 2

2 1 2

(t,s, v, w, x( (v), (w)))

(t,s, v, x( (v), (s)))

g dvdw

B g dv

A
 



 

 

  


 

 
Thus, 
 

1 1 2 2(x) || x || (D ) (D )T k M    .  (22) 
 
and (x) (R R )T BC     for any

 x (R R )BC    . 

Inequality (22) yields that T  transforms the ball 

0rB  into itself where 1 1 2 2(D ) (D )

1

M

k

 


. 

Also, applying (4) and taking into account the 

definitions of 1G , 2G , F  and T  we obtain  

 

 
2

1

T(x)(t,s) T(y)(t,s) F(x)(t,s) F(y)(t,s)

G (x)(t,s) G (y)(t,s)i i i
i 

  

  
 

 
Thus, T  satisfies (8) and by Lemma 2.1, T  has 

a fixed point.  
By a similar reasoning, one can derive the 
following consequences of Lemmas 2.1 and 2.2. 
 
Theorem 2.5. Assume that the following conditions 
are satisfied: 

i.
 

, , , : R Ri i i i       (i 1,2)  are 

continuous and (t)i   as t   for 
1,2i  . 

ii. : R Rf R R R R       is continuous. 

Mor- eover, there exist a constant [0,1)k   and 

nondecre- asing continuous functions 

1 2, : R R    with (0) 0i   for i 1,2  

such that 
 

1 1 2 2

| (t,s, x, y, v) f(t,s, u, z, w) | | x u |

(m (t,s) | y z |) (m (t,s) | v |)

f k

w

  
     

 
where : R R Rim      (i 1,2)  is a 

continuous function. 

iii. : sup{| (t,s,0,0,0) |: t,s R }M f     . 

iv. g : R R R Ri R R        (i 1,2)  

are continuous and 
 

1 2

(s) (t)

0 0

(t,s, v, w,

m ( x( (v), (w))t,s) | | :)

R R R

: sup

, , ( )

i i

i

i

ig

D
dvdw

t s x BC

 
 

  

 
 
    
 
   

   

 
Moreover, 
 

1 2

1

(s) (t)

0 0, 2

(t,s, v, w, x( (v), (w)))

(t,s, v, w, y( (v), (w))lim m (t,s)

0

)
i i

it s

i

i

g

g

dvdw

 
 

 






   

 
uniformly with respect to , (R R )x y BC   . 

Then the functional integral 
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 1 1

2 2

1 2

(s) (t) 1

0 0

(

1 2

2

1

t )

0 0
2

) (t

(t,s, v, w,

x( (v), (w)

(t,s) ( , , ( (t), (s)),

,

)

))

(t,s, v,

x( (v), (s)))

x t s x

g

dvdw

g

dvdw

 

 







 





 

 

    (22) 

 
has at least one solution in the space 

(R R )BC   . 

 
Proof: Similar to the proof of Theorem 2.4, consi- 
der

1 2,G , , : (R R ) (R R )F G T BC BC       
by the 

formulas 
 

1 1

2 2

(s) (t)

0 0

1 2

(s) (t) 1

0 0

(t) (t)

0

1 2

1 2

2

1 2
0

,

, , ( (t)

(x)(t,s) x(t,s),

(t,s, v, w,
G (x)(t,s) m (t,s)

x( (v), (w)))

(t,s, v, w,

x( (v), (w)))

(t,s, v,

x( (v), (

, (s)),

( )(t,

)

)

s )

,

)

s

i i i

i i

g

dvdw

t s x

g
T x

dvdw

g

dvd

F

w

 

 

 

 







 














 

 

 





 
 
 
 
 
 

  
 

Then by applying Lemma 2.1, we see that (23) 
has at least one solution in the space

 
(R R )BC   . 

3. Examples 

In this section, we provide two examples to show 
the efficiency of the main results. 
 
Example 3.1. Consider the following functional 
integral equation 
 

2 2

4 4

3

4

0 0

(1 x(t,s))
(t,s)

1

cos(x(v, w))

sin(ts) e sin(x (v, w))
arctan

2 sin(x(v, w))

w
t s

ts

t s
x

t s

v

dvdw
e





 
 
   
  
 

 

. (24) 

 
Eq. (23) is a special case of Eq. (1) with 
 

 

1 2 1 2 1 2

2 2

4 4

3 4

1

(t) (t) (t) (t) (t) (t) t

sin(ts)
f(t,s, x, y, z) (1 x) arctan

1

cosx e sinx
(t,s, v, w, x)

2 sinx

ts

w

t s
y z

t s e

v
g

          

   







 

 

2 (t,s, v, w, x) 0g   

From the definitions of , ,i i i    and 2g , it is 

easy to see that conditions (i) and (v) of Theorem 

2.4 are valid and taking 
sin(ts)

(t,s)
ts

m
e

 ,
1

2
k 

and (t)  t , we can find that ,f m and 
satisfy condition (ii) of Theorem 2.4. Also,

 1g  is 

continuous on R  R R R R      and 
 

3 4

1 0 0

3 4

3 4

sin(ts)

cos(x(v, w)) e sin(x (v, w))

2 sin(x(v, w))

R R R

sin(ts)

cos(x(v, w)) e sin(x (v, w))

2 sin(x(v, w))

cos(y(v, w))

|

sup |:

, , ( )

,

e sin(y (v, w))

l m

2

i

ts

w

t

s

w

t

s

t

w

D

e

t s

v

dvdw

e

v

v

x BC



 



 
 
 
 
   
 
 

  










 
 




 

0 0

sin(y(v, w))

0

t s

dvdw





 

 

 
for any , (R R )x y BC    , which implies 

that condition (iv) is satisfied. Next we estimate 
 

2 2

4 4

: sup{| (t, s,0,0,0) |: t, s R }

1
sup{ : t, s R }

1 2

M f

t s

t s





 

  


 

 
and condition (iii) of Theorem 2.4 is valid. Then by 
Theorem 2.4, the integral equation (24) has at least 

one solution in (R R )BC   . 

 
Example 3.2. Consider the following functional 
integral equation 
 

2

2

3 4

40

3 x(t,s)
(t,s)

4 1

cos(ux( ,s)) e (2 sin(x ( ,s)))

(2 sin(x ( ,s)))

u
t

t

ts
x

ts

u u u
du

e u




 




    (25) 

 
Eq. (25) is a special case of Eq. (1) with 
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2
1 2 2 3 1        (t) (t) (t) , (t) , (t)

3
f(t,s, x, y, z) x

1

 

y

 

4

t t t

ts
z

ts

        

  


  

2

1

3 4

2 4

(t,s, v, w, x) 0

cos(ux) e (2 sin(x ))
(t,s, u, x)

(2 sin(x ))

u

t

g

v
g

e



 




 

 
Now we check all conditions of Theorem 2.4. By 

the definitions of 3, ,i i    and 1g , it is easily 

seen that conditions (i), (ii) and (iv) are satisfied 

with 
3

4
k   and also (t,s,0,0,0) 0f   is 

bounded so condition (iii) of Theorem 2.4 is valid. 
Moreover, we have 
 

2

2

2

2

2

3 4

4

3

3 4

4 3

3 4

4

cos(ux( ,s)) e (2 in(x ( ,s)))
| |

(2 sin(x ( ,s)))

3e
| |

cos(ux( ,s)) e (2 in(x ( ,s)))

(2 sin(x ( ,s))) 2

cos(uy( ,s)) e (2 in(y ( ,s)))

(2 sin(y ( ,s)))

u

t

u

t

u

t

tu

t

u u s u

e u

u

e

u u s u

e u u

eu u s u

e u

 






 



 




 

 
Thus, 
 

2

2

2

2

3

4

40

3 4

4

3

2

4

cos(ux( ,s))

e (2 sin(x ( ,s)))
|

(2 sin(x ( ,s)))

R R

cos(ux( ,s)) e (2 sin(x ( ,s)))

(2 sin(x ( ,s)))

cos(uy( ,s)) e (2 sin(y ( ,s)

sup ,| :

, , (

))

)

2

l m

(

i

u
t

t

u

t

ut

t

D

t s R x

u u

u
du

e u

u u u

e u

u u u

e

BC



 

 
 
    
 
  

 




 


 








2

0

4sin(y ( ,s)))

0,

t

du
u




 

 
uniformly with respect to , (R R )x y BC     

and thus condition (v) of Theorem 2.4 is satisfied. 
Then by Theorem 2.4, the integral equation (25) has 

at least one solution in (R R )BC   . 
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