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Abstract– The problem of sparse signal reconstruction from the well-known Compressed Sensing 
measurement is considered in this paper. The measured signal is assumed to be corrupted with 
additive white Gaussian noise with zero mean and known variance. Based on detection theory, two 
iterative algorithms are developed for detection and estimation of nonzero elements of sparse 
signal. The principle of the proposed methods is based on applying composite multiple hypothesis 
test to the underlying problem at each iteration. Simulation results show the satisfactory 
performance of the proposed algorithms in sparse signal recovery. The proposed approach has the 
potential of being applied to other models for noise and signal.           
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1. INTRODUCTION 
 

Sparse representation of signals has received considerable attention in the communication community in 

recent years and has been applied to various fields such as image processing [1], wireless communication 

and channel estimation [2-4], antenna beamforming [5] and radar signal processing [6-7]. Among all 

related topics to sparse signal processing, Compressed Sensing (CS) has motivated much research 

recently. Using far fewer samples derived from linear random projection of main data, one would be able 

to recover the main sparse signal with high probability. To be more precise, according to basic CS theory 

[8-9], if a signal has a sparse representation in an overcomplete basis Ψ  [12], it can be reconstructed from 

a small number of measurements resulting from projection on a random basis Φ  that is incoherent with 

Ψ . Various reconstruction algorithms in literature are composed of two major categories [10-11]: convex 

or non-convex optimization methods and greedy ones. The first approach relies on solution of the 

optimization of a cost function which leads to more accurate results. Greedy methods [10] take advantage 

of the speed of greedy algorithms. However, the former is more complex while the latter has less precise 

results. Basis Pursuit (BP) and its noisy version called Basis Pursuit DeNoising (BPDN) are the examples 

of the first approach [12] while Orthogonal Matching Pursuit (OMP) [13] and its derived modified 

versions such as Stagewise OMP (StOMP) [14] and Regularized OMP (ROMP) [10] are some samples of 

greedy methods. 

In this paper we confront the problem of reconstructing sparse signals measured from CS approach 

using detection theory. In particular, our basic method and its modified version are iterative ones which, at 

each iteration, the reconstruction problem is formulated as a multiple composite hypothesis test and an 

attempt is made to find the element of sparse signal, until the stopping criteria is satisfied. So it can be said 
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that our proposed methods are similar to some conventional methods such as OMP as both of them try to 

find one element of sparse signal at each iteration. However, it should be mentioned that in algorithms 

such as OMP, the estimated element of sparse signal and its corresponding column of basis, are subtracted 

from the main signal in each iteration (i.e. the effect of detected column of ΦΨ  in measured data is 

eliminated), while in our proposed methods, we do not subtract the estimated element. Instead, the 

structure of assumed detection problem would be changed in such a way that at each new step compared 

to previous steps, a better model is assumed for noise vector in detection problem. Also, in spite of 

algorithms such as OMP which do not consider the noise and optimization methods which usually assume 

additive noise with limited norm, in our methods, the statistical properties of the additive noise are 

considered such that we are able to use various models of additive noise. Another main advantage of the 

proposed algorithms is that they utilize a new approach based on detection theory which enables us to use 

different detection approaches in our application. To the best of our knowledge there has been no 

reference using this approach till now, although there are some references on detection of existence of 

sparse signal in noise [15-16]. In such references, it has only been decided if there exists any sparse signal 

in noise (a binary test to decide between noise only hypothesis vs. noise plus sparse signal) but there is no 

method on estimation of sparse signal if it exists. In spite of this, in this paper the sparse signal's 

reconstruction has been considered based on detection theory. 

The rest of this paper is organized as follows. A brief review of basic CS theory is given in section 2 

Then in section 3, the concepts of the proposed algorithm are explained. A modified version of the 

proposed method is derived in Section 4. Section 5 presents the simulation results and finally, concluding 

remarks are given in section 6. 
 

2. THEORY OF COMPRESSED SENSING 
 

Compressed Sensing was initially stated in [8-9]. According to basic theory of CS, let's assume the desired 

signal N
N Rx 1  has a k-sparse representation in a basis NNΨ . In other words, if we write x  as 

1 NαΨx , only k elements of α  are nonzero, where Nk  . The set of nonzero indices of nonzero 

elements of α  is called support of vector α  which is usually assumed to be unknown a prior. Also, k is 

called the sparsity level of α . This signal is measured through a measurement matrix NmΦ  where 

Nm  , which results in a measured signal 1my . In other words, we have: 

]...[ 21 N

Nmwhere

hhhH

ΦΨH

HαΦΨαxΦy






                                                 (1) 

The main problem is estimating the desired signal x  using measured data y . Since the number of 

equations is less than that of unknown variables, in general form there is no unique solution for x . But 

since x  has a sparse representation in an known basis NNΨ , the basic problem can be converted to the 

problem of finding vector α  so that it can be estimated based on the assumption of sparsity, and then use  

αΨx  . 

Signal reconstruction under sparseness constraints can be formulated as an optimization problem of 

0 -norm criterion which is unfortunately an NP-hard one. Due to the fact of not being numerically 
feasible, alternative approaches have been proposed that can be divided into two main groups of greedy 
algorithms and relaxed optimization ones. In greedy methods, one or more nonzero elements are estimated 
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in each iteration. Orthogonal Matching Pursuit (OMP) [13] and its modified versions such as Stagewise 
OMP (StOMP) [14] and Regularized OMP (ROMP) [10] can be categorized into this group. The iterative 
approach of greedy algorithms results in less computational complexity methods compared to that of the 
optimization ones. The latter algorithms make use of some relaxation approaches to 0 -norm optimization 
[8] in order to convert the main problem to a convex one (The term 0 -norm for a vector is simply the 
number of its nonzero elements). The most famous member of this category is Basis Pursuit (BP) [12], 
which results in an 1 -norm criterion that can be solved using Linear Programming (LP). To guarantee 
exact recovery of every k-sparse signal α  from m compressed measurements y  in BP algorithm, the 
matrix ΦΨ  should satisfy the Restricted Isometry Property (RIP) as below: 

Restricted Isometry Property [10]: A matrix ΦΨ  is said to satisfy the RIP of order k, if there exists a 

constant   such that for any k-sparse vector α  we have: 

    2

2

2

2

2

2
11 αΦΨαα                                             (2) 

It is shown that RIP is satisfied with high probability by random matrices with i.i.d. Gaussian or 

Bernoulli elements. 

In practical situations, the desired signal x  is measured in the presence of additive noise 1mn ; i.e. 

we have: 

nΦxy                                                            (3) 

The additive noise has usually been modeled as a limited norm signal while in some references, white 
Gaussian model has been assumed for the noise signal. Although the presence of noise converts the 
problem to a new one, most recovery methods such as OMP do not exploit these new assumptions in their 
formulation. But some relaxed optimization based methods, due to their special mathematical formulation, 
change their optimization criteria so that they can be applied to the case of sparse signals corrupted with 
limited norm noise. An example of such methods is BP DeNosing (BPDN) which is the noisy version of 
the most famous BP. 

In this paper, we consider the special case of white Gaussian noise with distribution ),(~ 2I0n N  
with known 2 . In the next sections, we address the problem of reconstruction of x  from noisy 
measurement signal y . 

 
3. SPARSE SIGNAL RECOVERY BASED ON DETECTION THEORY 

 
As it was mentioned, the main concept of the proposed methods is based on extraction of one nonzero 
element in each iteration. This approach is similar to the most famous OMP method in sparse signal 
estimation. The main difference is that in OMP method the effect of estimated nonzero element is 
subtracted from measured signal in each iteration. But in the proposed methods, a detection hypothesis test 
should be solved in each iteration. Although we know that the signal x  is composed of 1k  elements of 
basis Ψ , at first step it has been assumed that there is only one nonzero element in α ; i.e. x  is 
constructed from one column of Ψ . Based on this assumption, the resultant test has been solved and the 
first nonzero element has been detected. Then, instead of subtraction of this element (similar to OMP), a 
new hypothesis test has been applied in which the location of the first element has been considered based 
on solution of the first step and the location of the second one is unknown. Finding the second index, the 
test is modified to the problem of detecting the third index assuming the first two indices have been found 
in the previous steps. The same procedure has been considered for finding the other elements. Note that 
the number of nonzero elements (k) is unknown aprior, so that we cannot find these elements by solving 
only one multiple hypothesis test. Instead, we have tried to detect the nonzero elements one by one in each 
iteration. 
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As it has been described, at first step suppose that there is only one nonzero element in α ; i.e. x  is 

constructed from one column of Ψ . So, the main problem of detecting the nonzero elements of α  can be 

modeled as selecting one of the following structures: 
















)1(

)1(
222

)1(
111

:

:

:

nhy

nhy

nhy

NNN αΗ

αH

αH


                                                 (4) 

where ih  is the ith column of H  and iα  denotes the ith element of α  in (1), respectively. 

Assuming there is only one nonzero element in α , the noise vector )1(n  has normal distribution 

 mN I0 2, ; i.e. there is no signal component in )1(n  (this model is approximately true for cases with 

high SNR for one nonzero element and low SNR for the others). 
Selecting one of these structures with unknown values of Nααα ,...,, 21  is equivalent to a composite 

multiple hypothesis test [17] and the proper solution is Generalized Maximum Likelihood Rule (GMLR); 

i.e. we should solve the following problem (assuming Ni
N

Hp i ,...,2,1,
1

)(  ): 

   NiHαpj ii
i

,...,2,1,,ˆ|maxarg1  y                                                     (5) 

where iα̂  is maximum likelihood estimation for iα : 
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   
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
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                                       (6) 

By replacing the ML estimation in (5), we have: 
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Now since the location of the first nonzero element is known, we can search for the second one. 

Similar to the assumptions of the first detection problem, and considering 1j  as the first nonzero element, 

the first detection problem can be modified to the second one as follows: 
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Note that in the second detection problem, since one nonzero index of α  is found in the previous 
step, we should select one of the other N-1 indices (the first (N)- tuple hypothesis test changes to a (N-1)-
tuple one). If it is assumed that there is only two nonzero elements in α , the noise vector )2(n  has normal 
distribution  mN I0 2, . In this hypothesis test, 

1j
α  and iα  ( Njji ,...,1,1,...,2,1 11  ) are all 

assumed to be unknown. 
Similar to the previous test, GMLR can be used to detect the second index. By using the same 

procedure and assuming equal probable iH , we have: 
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Note that the second formulation in (8) is more accurate than the first one in (4) and represents a 
better form of the main problem, since the assumption of being a normal vector represents )2(n  better than 

)1(n . 
Finding the second index, the test is modified to the problem of detecting the third index assuming 

the first two indices to be 1j  and 2j . Similar procedure can be applied to the new problem to find the next 
index, and then one should find the forth index, and so on. As a stopping criterion, pC  should be 
calculated and compared to predefined threshold as follows. 

  yHHHα
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p
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p
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C


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


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1

2

ˆ

set in  indices  toingcorrespond  of            

 columns  of composedmatrix :

iteration  upto indices detected ofset :

ˆ

                                   (10) 

Once the sparse signal has been estimated, the desired vector x  can be calculated using 
pp

αHx ˆ  . 
We call the proposed algorithm the Iterative Detection Based Compressed Sensing (IDBCS). 
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A brief review of the proposed algorithm can be seen in Table I. Note that to solve sparse signal 
reconstruction from CS measurements, the proposed approach can be used to develop various algorithms 
for different statistical models of noise or signal. At last, it should be mentioned that as it is described in 
appendix A, the matrix inversion of      1

11



 
 i

T
i pp

hHhH  at step 2 can be achieved by a recursive 
method using   1

11



 


pp

T HH  from the previous iteration which decreases the computational complexity 
dramatically. 

 

4. MODIFICATION OF THE PROPOSED ALGORITHM 
 

As mentioned in the previous section, the main concept of the proposed method is detecting only one 
nonzero element at each iteration and simultaneously, trying to modify the detection problem formulation 
for the next step. Let’s have an insight into the first step in (4). In this equation, it is assumed that there 
exists only one nonzero element in α . So the noise vector )1(n in (4) has been modeled as a vector with 
normal distribution  mN I0 2, ; i.e. the mean value of this noise has been assumed to be zero. But, there 
are some other nonzero elements that force the noise vector to have a nonzero mean. In other words, a 
better model for the noise vector is to assume a nonzero mean normal distribution; i.e. )1(n  in (4), should 
be modeled as a vector with normal distribution  mN Iμ 2, . Although the assumed distribution can be 
considered as a perfect one for the noise vector, the mean vector μ  is an unknown vector of length m. So 
the number of unknown parameters would be m+1 (m elements of the mean vector μ  and one nonzero 
element of α  which is iα ). It can be shown that such an assumption leads to a linear system of equations 
with infinite solution in finding the ML estimation of μ . Also, the trivial solution for ML estimator is 

,ˆ yμ   which results in maximization of a constant term for all hypotheses, which is meaningless. So, 
instead of having a fully unknown mean vector we heuristically model the noise signal by a vector that has 
a structured mean vector. For the first iteration, the mean of all columns of matrix H  multiplied by an 
unknown coefficient )1(μ  is considered as the noise mean. To be more precise, the noise vector )1(n  is 

Table 1. Brief review of IDBCS 

Initialize algorithm with 0,, 0  pNm ΦΨH  
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If  Cp>threshold,  go to step 1, else stop 
 

5. 
pp

αHx ˆ   
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modeled as a vector with normal distribution  mμN Id 2)1()1( , , where )1(d  is the mean of all columns of 
matrix H . The term "structured" refers to assuming that the noise vector has a mean equal to mean of all 
columns of matrix H . In other words, it has been assumed that the mean cannot be any vector in m-
dimensional space but instead it is equal to a known vector multiplied by an unknown coefficient. 

With similar assumption to that of the previous section, the detection problem of (4) can be solved 
using the modified noise model as follows: 

    NiHμαpj ii
i

,...,2,1,ˆ,ˆ|maxarg 1
1  y                                 (11) 

where iα̂  and  1μ̂  are maximum likelihood estimations for iα  and  1μ . Let’s first find the ML estimation 

of iα 's: 
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Now, by replacing the ML estimation of iα , after some mathematical manipulations, the ML 
estimation of the second parameter which is  1μ  can be calculated as follows: 
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Finding the ML estimation of unknown parameters, the solution to the considered detection problem 
is: 
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Solving the first detection problem, the location of the first nonzero element will be found. Then 
similar to the previous section, we can search for the second one. The second detection problem would be 
the same as (8) except that a non-zero mean noise model would be utilized in this section; i.e. the noise 
vector )2(n  is assumed to have a normal distribution of   mμN Id 2)2(2 , . The vector )2(d  denotes the 
mean of all columns of matrix H  except the detected column in the first iteration (

1j
h ). 

Similar to the previous test, GMLR can be used to detect the second index. By using the same 
procedure and assuming equal probable iH , we have: 
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Using a similar procedure, the algorithm should be continued until the stopping criteria of (10) is 
satisfied. A brief review of this modified version of the proposed algorithm can be seen in Table 2. As it 
will be seen in the computer simulation section, the performance of this modified method is better than 
that of the previous one due to assuming nonzero mean for noise signal. 

 
 

5. ERROR PROBABILITY ANALYSIS 
 

In this section, we derive a union bound for error probability of the assumed detection problem in IDBCS 
method [18]. At first step, consider the special binary case with the following detector structure. Note that 
this model can be considered as the binary form for the general M-ary detector at each iteration. In this 
model, 0α  and 1α  are the vectors of unknown parameters which should be replaced by their maximum 
likelihood estimation. Compared to general M-ary form in p th iteration, 0α  and 1α  would be vectors of 
length p . So we have: 
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To analyze the error probability, the decision rule can be rewritten as follows: 
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By utilizing this formulation, the error probability assuming that 1H  is the true hypothesis (i.e. 
nαHy  11 ) would be calculated as follows: 
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0
)(

1
dQQfP Qerror                                                     (18) 

The decision variable Q  has a quadratic form. To find its probability density function )(QfQ , the 
following theorem can be used. 

Theorem 1: Let 1mz  be a vector with normal distribution )( Σμ,N  where Σ  is a positive definite 

matrix. Let A  be a symmetric matrix and define AzzTb  . Let ),...,2,1( mii   be the eigenvalues of 
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The random variables iU 's are mutually independent and have standard normal distribution 

( )10( ,N ). Then AzzTb   can be expressed as  

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m

i
iii Ub
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Applying theorem 1 to our problem and assuming that 1H  is the true hypothesis, the decision 

variable Q  can be written as  
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i
iii UQ

1

2  where: 



H. Azad et al. 
 

IJST, Transactions of Electrical Engineering, Volume 37, Number E2                                                                   December 2013 

110

 
 

   

 












11
1

11
1

21
2

2

2

11

,...,,

,...,,

),...,,(

:),...,2,1(

),(~

αHP
ξ

αHzP
U

PWPP

W

IΣ

αHμ

Σμy

T
T

mm

T
T

mm

m
T

i

UUU

diagthatsuchmatrixorthogonalmmanis

ofseigenvaluemi

N














  (21) 

Since the random variables iU 's are independent and have standard normal distribution, we can say 
that Q  is a linear combination of m independent random variables with non-central chi-square 
distribution, all with one degree of freedom and noncentrality parameters 2

i  ( mi ,...,2,1  ), respectively 
[19]. 

Finally, the probability density function for such a random variable ( Q ) can be expressed as follows 
[20-21]: 
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To define the parameters of this equation, suppose that 0i  for ,...,2,1i , 0i  for 
  ,...,2,1i , and 0i  for mi ,...,1   [21]. Note that some of i 's for 

,...,2,1i  may be equal. Let tjj ,...,2,1,   denote the t  distinct positive eigenvalues among the i 's 
and let j  denote the multiplicity of j  (in other words the number of i 's which are equal to j ). By 
similar definition for negative eigenvalues, we can write Q  as follows: 
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Then for positive eigenvalues we have: 
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And for negative eigenvalues we have: 
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The parameter b  is defined as  
2

11     and )(x  represents the well known Gamma function. Also, 
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The density function of (22) is written based on the assumption that   and    both are not 

nonnegative integers plus 
2

1
. The probability density function for the special case of   and    are both 

nonnegative integers plus 
2

1
is also given in [21]. 

By similar procedure, 
0errorP ,  which denotes the error probability assuming that 0H  is the true 

hypothesis (i.e. nαHy  00 ) can be calculated and finally, by assuming equal probable hypothesis (i.e. 

2

1
)()( 10  HPHP ) we have: 
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The exact expression for the total error probability in general M-ary case cannot be easily evaluated. 
It includes the joint pdf of iL 's which, because of not being independent, cannot be written using the 
marginal pdf of each variable. Instead, we can apply the well known union bound approach [18]. For the 
pth iteration, suppose that iH  is the true hypothesis, so that the error probability can be written as: 
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Based on the theory of statistics, we have: 
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By writing similar expression for error probability in the case of assuming each of the other 
hypothesis being the true one, the total error probability can be written as follows (for equal probable 
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In this equation, )|( iib HLLP   can be considered as the error probability of binary case assuming iH  
is the true hypothesis which can be calculated using the results in (18) and (22). 
For the modified IDBCS method, the probability density function of decision variable ( iL ) is so 
complicated and is not theoretically tractable. 

 
6. COMPUTER SIMULATION 

 
To evaluate the performance of the proposed IDBCS algorithm and its modified version, we have 
exploited the test models of [10]. In all cases here, "N" is selected to be 256 and number of trials is set to 
be 1000. Also, basis matrix Ψ  is assumed to be the identity matrix NI . For the first simulation, we use 
the Gaussian measurement matrix. Noise vector is assumed to be white Gaussian and normalized to have a 
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norm equal to 0.5. For each trial, a random Φ  and a random noise vector is used. In addition, we generate 
the binary signals with a support uniformly selected at random similar to simulations in [10]. Table 3 
shows the values of the probability of correctly detecting nonzero indices of vector α  (Pd) versus various 
values of sparsity level (k) and number of measurements (m). As it is expected, by increasing the number 
of measurements, Pd increases. Further, for greater values of k, more measurements should be used to 
detect the nonzero elements correctly. Since the approach of the proposed methods is similar to greedy 
ones (which one or more nonzero element would be estimated at each iteration), the results are compared 
to those of two well-known greedy algorithms: OMP method [13] and also ROMP [10]. As it has been 
claimed in [10], ROMP is the first algorithm to provide both benefits of optimization-based methods and 
greedy ones. Also, OMP is known as a basic algorithm in greedy methods group. Note that since we have 
simulated the noisy case, as it has been suggested in [10], the stopping criteria for ROMP has been 
changed by allowing the algorithm iterates at most k times. 

As it can be seen in this table and the forthcoming tables, the performance of this new approach is 
slightly better than the OMP and ROMP results. 

 
Table 3. Probability of correct detection of nonzero elements of sparse signal vs. various values of  

         sparsity level (k) and number of measurements (m) for Gaussian measurement matrix 
 

  OMP ROMP IDBCS Modified IDBCS   OMP ROMP IDBCS Modified 
IDBCS 

k = 2 

m=5 0 0 0.001 0.128 

k = 12 

m=5 0 0 0 0 
m=25 0.83 0.62 0.919 0.97 m=25 0 0 0 0 
m=50 1 0.992 1 1 m=50 0.01 0 0.06 0.099 
m=75 1 1 1 1 m=75 0.616 0.02 0.735 0.826 
m=125 1 1 1 1 m=125 0.997 0.398 0.999 1 
m=256 1 1 1 1 m=256 1 1 1 1 

k = 4 

m=5 0 0 0 0 

k = 20 

m=5 0 0 0 0 
m=25 0.27 0.03 0.393 0.62 m=25 0 0 0 0 
m=50 0.989 0.498 0.986 0.998 m=50 0 0 0 0 
m=75 1 0.886 1 1 m=75 0.014 0 0.055 0.093 
m=125 1 1 1 1 m=125 0.941 0.188 0.964 0.967 
m=256 1 1 1 1 m=256 1 1 1 1 

 
Similar simulation has been applied to the Bernoulli measurement matrix and the results are 

presented in Table 4. As it can be seen, the Bernoulli case needs a few more measurements to have a 
similar Pd as compared with Gaussian case, especially in greater values of k. 

 
Table 4. Probability of correct detection of nonzero elements of sparse signal vs. Various values of sparsity 

 level (k) and number of measurements (m) for Bernoulli measurement matrix 
 

  OMP ROMP IDBCS Modified IDBCS   OMP ROMP IDBCS Modified 
IDBCS 

k = 2 

m=5 0 0 0 0 

k = 12 

m=5 0 0 0 0 
m=25 0.874 0.664 0.886 0.916 m=25 0 0 0 0 
m=50 1 1 1 1 m=50 0.037 0 0.043 0.05 
m=75 1 1 1 1 m=75 0.708 0.04 0.718 0.748 
m=125 1 1 1 1 m=125 1 0.526 1 1 
m=256 1 1 1 1 m=256 1 1 1 1 

k = 4 

m=5 0 0 0 0 

k = 20 

m=5 0 0 0 0 
m=25 0.27 0.012 0.265 0.345 m=25 0 0 0 0 
m=50 0.982 0.516 0.981 0.981 m=50 0 0 0 0 
m=75 1 0.902 1 1 m=75 0.024 0 0.021 0.025 
m=125 1 1 1 1 m=125 0.942 0.203 0.945 0.945 
m=256 1 1 1 1 m=256 1 1 1 1 

 
Since the results for ROMP method show poorer performance than OMP, for incoming simulations, 

only OMP method has been considered to compare with the proposed algorithms. 
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The curves of required number of measurements to have a Pd equal to 99% for various values of 
sparsity level for Gaussian measurement matrix can be seen in Fig. 1. These curves show the required size 
of measurement vector so that in 99% of trials, the indices of nonzero elements are detected correctly. As 
it is expected, the greater the sparsity level, the higher the number of measurements needed. 
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Fig. 1. Required number of measurements (m) to have a Pd equal to 99% for  

various values of sparsity level (k) 
 

Another parameter that affects the performance of reconstruction algorithms is the SNR of nonzero 

elements of sparse vector α . To have a better insight to the effect of SNR, a simulation with the previous 

conditions is performed, except that the noise vector is assumed to have normal distribution with zero 

mean and 12  . Also, the amplitude of nonzero elements is taken equal and assigned a value so that the 

predetermined SNR is satisfied. The SNR for each nonzero element is defined as: 

2

2


 iSNR                                     (32) 

The resulting values for Fix sparsity level equal to 12 and different number of measurements versus 

various values of SNR can be seen in Tables 5 and 6. Also, for two values of m , the curves of probability 

of detection vs. SNR can be seen in Figs. 2 and 3. As expected, increasing the SNR of nonzero elements 

increases the probability of correctly detecting their indices. 
 

Table 5. Probability of correct detection of nonzero elements of sparse signal vs. various values of SNR  
and number of measurements (m) for Gaussian measurement matrix (k=12) 

 
  OMP IDBCS Modified IDBCS   OMP IDBCS Modified IDBCS 

m = 51 

SNR=-6dB 0.000 0.000 0.050 

m = 71 

SNR=-6dB 0.009 0.013 0.091 
SNR=1dB 0.061 0.076 0.105 SNR=1dB 0.656 0.647 0.700 
SNR=6dB 0.138 0.151 0.162 SNR=6dB 0.758 0.771 0.811 
SNR=11dB 0.170 0.181 0.193 SNR=11dB 0.799 0.815 0.847 
SNR=14dB 0.194 0.221 0.223 SNR=14dB 0.839 0.842 0.849 
SNR=16dB 0.210 0.250 0.262 SNR=16dB 0.853 0.847 0.856 

m = 61 

SNR=-6dB 0.000 0.000 0.026 

m = 81 

SNR=-6dB 0.033 0.036 0.103 
SNR=1dB 0.307 0.336 0.410 SNR=1dB 0.866 0.857 0.874 
SNR=6dB 0.502 0.511 0.538 SNR=6dB 0.924 0.930 0.968 
SNR=11dB 0.547 0.590 0.626 SNR=11dB 0.941 0.947 0.956 
SNR=14dB 0.565 0.566 0.580 SNR=14dB 0.949 0.948 0.951 
SNR=16dB 0.593 0.603 0.612 SNR=16dB 0.951 0.950 0.968 
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Table 6. Probability of correct detection of nonzero elements of sparse signal vs. various values of SNR and 
 number of  measurements (m) for Bernoulli measurement matrix (k=12) 

 
  OMP IDBCS Modified IDBCS   OMP IDBCS Modified IDBCS 

m = 51 

SNR=-6dB 0.000 0.000 0.007 

m = 71 

SNR=-6dB 0.002 0.003 0.025 
SNR=1dB 0.031 0.027 0.085 SNR=1dB 0.522 0.535 0.543 
SNR=6dB 0.084 0.064 0.067 SNR=6dB 0.649 0.658 0.675 
SNR=11dB 0.098 0.091 0.101 SNR=11dB 0.714 0.731 0.755 
SNR=14dB 0.101 0.098 0.116 SNR=14dB 0.738 0.737 0.756 
SNR=16dB 0.103 0.123 0.138 SNR=16dB 0.741 0.744 0.755 

m = 61 

SNR=-6dB 0.000 0.000 0.027 

m = 81 

SNR=-6dB 0.021 0.032 0.035 
SNR=1dB 0.217 0.236 0.289 SNR=1dB 0.767 0.776 0.831 
SNR=6dB 0.357 0.346 0.371 SNR=6dB 0.884 0.879 0.885 
SNR=11dB 0.425 0.433 0.434 SNR=11dB 0.891 0.884 0.903 
SNR=14dB 0.435 0.439 0.444 SNR=14dB 0.900 0.903 0.918 
SNR=16dB 0.440 0.441 0.465 SNR=16dB 0.907 0.912 0.925 
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Fig. 2. Probability of correct detection of nonzero elements of sparse signal vs. various values of SNR and  

number of measurements (m=61 and 71) for Gaussian measurement matrix (k=12) 
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Fig. 3. Probability of correct detection of nonzero elements of sparse signal vs. various values of SNR and 

 number of measurements (m=61 and 71) for Bernoulli measurement matrix (k=12) 
 

The proposed detection methods can be compared with a complete detection theoretic approach at 
least for small N. For example, for N=3 we have a 7-ary hypothesis test in which 3 hypotheses assume 
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sparse signal of order one, 3 hypothesis assume order two (i.e. 011,101, and 110) and one hypothesis 
assumes order 3. In order to run simulations for this test, the following values for N, m and k have been 
considered. 

Table 7. The simulation parameters for comparing the results of proposed method with  
a complete detection theoretic approach 

N=3, m=3, k=1 

N=3, m=3, k=2 

N=3, m=2, k=1 

N=3, m=2, k=2 

N=3, m=1, k=1 

 
As mentioned in [17], since this problem is a nested one, the following maximization (which 

represents a similar approach to GLRT in binary test) would always decide hypothesis with order 3 as the 
true one (assuming equal probable hypothesis). 

   7,...,2,1,,ˆ|maxarg  iHpj ii
i

θy                                  (33) 

In this test, the vector iθ̂  represents the maximum likelihood estimation of the vector of unknown 
nonzero elements under hypothesis iH . Also, by using nested test we mean the hypothesis with order 1 
and 2 are subsets of the hypothesis with order 3. Instead of (34), the following maximization should be 
done [17]: 

    7,...,2,1,)ˆ(detln
2

1
,ˆ|lnmaxarg 



  iHpj iii

i
θIθy   (34) 

where (.)I  denotes Fisher matrix. Using this approach, the simulation results would be as follows. 
 

Table 8. The probability of correct detection of nonzero elements of sparse signal for simulations of  
comparison of OMP and IDBCS with a complete detection theoretic approach 

 
 OMP IDBCS Complete Detection Theoretic Approach 
N=3, m=3, k=1 1 1 0.816 
N=3, m=3, k=2 1 1 0.918 
N=3, m=2, k=1 0.628 0.638 0.015 
N=3, m=2, k=2 0.316 0.395 0.02 
N=3, m=1, k=1 0.317 0.346 0.014 

 
Note that, as it is mentioned in the texts of detection theory, GLRT approach (and similarly the above 

maximization) is not an optimum one. As it can be seen in simulation results, in this special problem, 

OMP and IDBCS show better performance compared to GLRT approach. 

In section 5, the union bound for error probability of IDBCS has been derived. To justify the derived 

equations, the computer simulation results have been shown in this part. In order to run this simulation, we 

assume a vector with sparsity level equal to 3 (k=3), N=256 and various values for number of 

measurements (m). Also, we consider the final iteration in IDBCS and assume that the first 2 nonzero 

elements have been correctly detected in previous steps. The number of trials has been set to 10000. In 

each trial, the third index for nonzero element has been selected randomly and with equal probability from 

indices other than the previous 2 indices. Then the IDBCS algorithm has been run and the detected index 

has been compared to the true one. If these two indices were different, that trial has been marked as a trail 

with error occurrence. Finally, the number of these kinds of trials divided by 10000 gives the total error 

probability. The comparison between the simulation results and the union bound from theoretical equation 

in (31) can be seen in Fig. 4. 
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Fig. 4. Comparison between the analytical union bound for error probability with simulation  

results in IDBCS algorithm for various values of number of measurements (m)  
for Gaussian measurement matrix (k=3, N=256) 

 
As can be concluded from the presented results, the performance of the proposed algorithms has 

slightly better performance in comparison with OMP. The performance of these algorithms can be 
improved by an estimation-confirmation approach for finding and estimating nonzero elements. Instead of 
detecting one nonzero element in each step, although there is the possibility of existence of some other 
nonzero elements in the noise term in the considered test, one can guess either the existence or non 
existence of potential indices. In other words, the potential nonzero elements can be estimated using some 
simple inaccurate approaches and then for confirmation step, the detection theory can be utilized for 
selection between these probable indices. In such an algorithm, for the detection test, the possibility for the 
noise vector not including signal terms would be higher (since nearly all the signal terms have been 
extracted with high probability in the first step). Such an approach is our trend for future works. Although 
in modified IDBCS, an attempt has been made for the deficiency in noise model to be covered by 
assuming a mean vector for noise based on the mean of all signal terms. 

In addition to comparison between performance of the proposed methods, OMP and ROMP in 
detecting nonzero elements of sparse vector, in this part the computational load of algorithms has been 
compared. For OMP method in each iteration, there is a sorting and selection through N elements, 
multiplication by T

NmH  and finally, a least squares problem is solved. These matrix manipulations can be 
done in )(N , )(mN  and )( 2 Nk  respectively [10]. So, the overall cost for OMP in each iteration is 
of order ))(( 2 Nmk  . Besides these operations, there is a regularization step in ROMP with total cost 
of )(k  in each iteration. So the total cost of ROMP in each iteration is of order ))(( 2 Nmk   similar 
to OMP [10]. 

Based on Appendix 1 and Table 1, the computational load for calculating      1

11



 
 i

T
i pp

hHhH is 
of order   mpO  21 . The inner product of measured data 1my and each column of NmH can be 
calculated and saved before running IDBCS method so that the terms  i

T

p
hHy

1  can be substituted 
using the results in saved memory. Other than these parts, the complexity for matrix multiplications and 
also sorting and selection in Table 1 is of order  ppO 2  and  NO , respectively. Since m is the number 
of measurement which is much greater than 1, the total complexity load for IDBCS can be written of order 

))1(( 2 pmN  where p  denotes the iteration number. Assume that both OMP and IDBCS 
algorithms iterate k times until all k nonzero elements have been estimated, it can be said that the 
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maximum computational load for IDBCS occurs in kth iteration and is of order ))1(( 2 kmN . For 
modified IDBCS, the equation for  pμ̂

 

can be written as shown below: 

           
          )(1)(

)(1

1111

1111ˆ
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pppp

ppppμ
dIhHhHhHhHd

dIhHhHhHhHy
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
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









   (35) 

Based on Appendix 1, the computational load for      1

11



 
 i

T
i pp

hHhH  is of order   mpO  21 . 

The matrix multiplication in          IhHhHhHhH 
 


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T

ii
T

ii pppp 1111

1
 is of order 

 pmmpO 22  . Considering the vector-matrix multiplications in nominator and denominator of  pμ̂ , the 

total complexity load for calculating  pμ̂

 

is of order  mmpmmpO  222  which can be approximately 

written as  pmmpO 22  . Also, by substituting the ML estimation of nonzero elements, the term 
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The first term has been calculated before, so that calculation of    













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


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ˆ

ˆ
1

1

pp

i
i μ

α

α
p

p
dhHy  only 

includes a matrix-vector multiplication which can be calculated with order  2mO . Finally, the criteria can 

be calculated with order  mO  and sorting can be done with  NO . So for modified IDBCS, the 

computational load would be of order )( 22 pmmpN   in each iteration, so that maximum load for 

modified algorithm is of order )( 22 kmmkN  . 
 

7. CONCLUSION 
 

Two new algorithms for reconstruction of sparse signals measured by compressed sensing have been 

developed. The new approaches are based on detection theory. By applying composite multiple hypothesis 

tests, the recovery problem has been solved based on an iterative method. It has been assumed that the 

signal is corrupted with additive normal noise with known parameters. The union bound for the error 

probability of one detector has been analytically calculated. Also, computer simulations have been 

provided which show acceptable performance for the proposed methods in reconstruction of sparse 

signals. Due to the general structure of the proposed approach, it can be developed for other noise models 

with known or unknown parameters which are our trends for future research.  
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APPENDIX A: NOTE ON COMPUTATIONAL COMPLEXITY 
 

The most computational load of the proposed algorithms at p th iteration is the matrix inversion of 

     1

11



 
 i

T
i pp

hHhH  which is a matrix inversion of size pp . However, by utilizing the following lemma, 

this inversion can be done using   1

11


 


pp

T HH  which is calculated in the previous iteration. 
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Lemma 1: For proper dimensions of matrices, the following equality (inverse of partitioned matrix) can be proved if 

all inverses exist [22]: 
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Now, let’s rewrite our matrix inversion problem as follows: 
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Using lemma 1, we can write: 
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So after some mathematical manipulations, we have: 
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If we define   1
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p HHF  which has been calculated in  1p th iteration, and also 
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The computational complexity of pF  by calculating      1

11



 
 i

T
i pp

hHhH  and (A.5) is of order )( 3mO  

and   mpO  21 , respectively. Since p  is the iteration number (which is much less than m ), by using (A.5), the 

computational complexity of pF  dramatically decreases compared to calculation of      1

11



 
 i

T
i pp

hHhH .  
  


