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Abstract– This paper developed a new elastoplastic model for coarse-grained soils. Plastic 
potential surface was established by solving a differential dilatancy equation, which is obtained via 
the triaxial test results. This model obeys a non-associated flow rule; therefore, the yield surface is 
not consistent with the plastic potential surface. Expression of the yield surface was established 
similar to the plastic potential surface, but its shape is influenced not only by the stress ratio η, but 
the mean stress p . A unified hardening parameter that is independent of stress path is adopted, so 
that negative dilatancy and positive dilatancy properties of coarse-grained soils could both be 
described. In this research, elastoplastic formula of the proposed model is deduced. This model 
was also evaluated with several groups of test results under different stress paths (i.e. conventional 
triaxial tests, constant mean stress test and constant stress ratio test, etc.). Results showed that 
model predictions agree well with the test results.          
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1. INTRODUCTION 
 

With the development of roller compaction technology, coarse-grained soils are widely used in rock-fill 
dam, road foundation, airport, among other applications. These coarse-grained soils are large, angular, and 
granular rock materials blasted from the parent rock, and have a large range of particle size. Mechanical 
properties of coarse-grained soils are significantly different from sand or clay in compressibility, 
dilatancy, strength, particle breakage etc.  

In the past years, many scholars were dedicated to the study of coarse-grained soils and achieved 
many useful conclusions. Several constitutive models were also proposed to describe the mechanical 
behaviors of the coarse-grained soils. Duncan [1] proposed a nonlinear strength criterion of the coarse-
grained soils, i.e. friction angle decreases with the increase of confining pressure. Shen [2-3] introduced a 
two-yield-surface model for coarse-grained soils, which is widely used in rock-fill dam analysis for its 
simplicity and practicality. Alonso & Oldecop et al. [4-6] proposed the Barcelona Basic Model (BBM) 
and the Rock-fill Model (RM), which were also applied to analyze the Beliche Dam. Yao et al. [7-8] took 
into account the particle breakage in coarse-grained soils and developed a model within the framework of 
Cambridge model (Roscoe, Schofield & Wroth) [9]. Yao et al. [10] also modified this model to reflect the 
behaviors of coarse-grained soils under cyclic loadings, within the “sub-loading” concept. Liu et al. [11-
12] studied the critical state of the coarse-grained soils and proposed a constitutive model according to the 
generalized plasticity theories. Time-dependent behaviors of coarse-grained soils were also investigated 
theoretically (Alonso & Oldecop) [13] and practically (Zhu et al.) [14].  
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In the current stage, there are still some shortcomings that need to be solved in those models. For the 

Barcelona Basic Model (BBM) or Rock-fill Model (RM), model parameters are not easy to determine, so 

its practicality is limited. Wang et al. [15] pointed out that the original two-yield-surface model cannot 

reasonably reflect the soil behaviors under different stress paths, therefore, the two-yield surface model 

was revised. Test results show that plastic flow direction of coarse-grained soils cannot be described with 

the original dilatancy equation (proposed by [9]), therefore, the model proposed by Yao et al. may not 

predict behaviors of coarse-grained soils properly; according to the results of this paper, there is a rather 

large error between the model predictions and tests results when the specimen is along the constant stress 

ratio stress path. Constant stress ratio stress path is considered to be an important condition in rock-fill 

dam engineering; many in-situ measurements showed that, during the construction period of the rock-fill 

dam, stress ratio of soil element remains almost constant. Monitoring data of the Sanbanxi Concrete-Faced 

Rock-fill Dam during its construction are shown in Fig. 1. Positions of the stress cells as well as the 

construction schedule are presented in Fig. 1 (a). As can be seen, four groups of stress cells were installed 

at the elevation of 346.2m; each group has two stress cells to respectively monitor the vertical stress y and 

horizontal stress x . The relationship of y and x is plotted in Fig. 1 (b). If the orientations of the first 

principle stress 1 and third principle stress 3 are considered to be consistent with y and x , it can be said 

that, the principle stress ratio ( 1 3  ) remains almost constant during the period of rock-fill dam 

construction. Thus, models proposed for coarse-grained soils should consider the constant stress ratio 

stress path as an important condition.  
 

478.0

EC-1-2 EC-2-2 EC-3-2 EC-4-2

EC-4-1EC-3-1EC-2-1EC-1-1

Concre
te 

sla
b

2005.8.25

2005.5.25~2005.7.13

2005.7.19

2005.2.6~2005.5.24

445.0

440.0

2004.12.6~2004.12.25
432.0

2004.10.4~2004.12.5 410.0

2004.7.29~2004.10.4 393.0
390.0

379.02004.6.23~2004.7.24

2004.2.27~2004.4.13 2004.4.14~2004.6.23

346.0

2003.12.17~2004.2.26
2003.11.10~2003.12.16

Stress cells

0 200 400 600 800 1000 1200 1400
x (kPa)

0

1000

2000

3000


y 

(k
P
a)

Water level

Dam height
EC-1-1/EC-1-2

EC-2-1/EC-2-2
EC-3-1/EC-3-2

EC-4-1/EC-4-2

Dec-2002 Jan-2004 Feb-2005 Mar-2006 Apr-2007 Jun-2008
Time

200

300

400

500

H
 (

m
)

 
                            (a) Positions of the stress cells and construction schedule                            (b) Relationship of y and x   

Fig. 1. In-situ measurements of the Sanbanxi Dam 
 

In this paper, a new elastoplastic model was developed for coarse-grained soils, dilatancy equation of 

the coarse-grained soils was proposed based on the conventional triaxial test results; by solving the 

differential equation, expression of potential surface can be obtained. Expression of the yield surface was 

also proposed according to the deformation characteristics of coarse-grained soils. The new model adopts 

a unified hardening parameter [16], so that positive dilatancy and negative dilatancy in the shearing 

process could both be described. In this research, elastoplastic formula of the proposed model was also 

presented. Then the proposed model was validated with triaxial test results under various stress paths.  
 

2. DILATANCY MECHANISM AND DILATANCY EQUATION  
OF COARSE-GRAINED SOILS 

 
a) Dilatancy mechanism of the coarse-grained soils 

 
Typical triaxial test results of two groups of Lechago shale rock-fills are presented in Fig. 2 [17]. In the 

shearing process, coarse-grained soils showed a volume expansion in low confining pressure but a volume 

contraction in high confining pressure. This discrepancy may be mainly caused by particle breakage. 
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Terzaghi [18] suggested that a possible reason for large deformation of coarse-grained soils could be the 

breakage of rock particles and the subsequent rearrangement of the granular structure into a more stable 

position. After, the work of Marsal [19] obtained a similar conclusion. In low confining pressure, there is 

slight particle breakage; particle rearrangement caused the expansion of soil volume. Conversely, high 

confining pressure leads to more particle breakage and contraction of the soil volume. 
Recently, CT technology [20] was used to track the traces of the soil particles in shearing test. Figure 

3 presents the CT images of coarse-grained soils sourced from the Shuibuya Rock-fill Dam with a 
confining pressure of 0.2MPa. When the axial strain reached 0.0%, 5.2%, 10.0%, 14.4%, respectively, the 
same cross-section of the specimen was scanned. According to Fig. 3, at the beginning of the test 
(εa=0.0%), soil particles were tightly packed and embedded in each other. At the beginning, soil skeleton 
was rather stable. In the shearing process, soil particles were moving or rotating, which results in dilatancy 
of soil volume. Figure 3(d) presents the specimen that close to failure state, shear bands also formed 
during this period.  
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(a) Specimen A                                               (b) Specimen B 

Fig. 2. Typical curves of shale rock-fills in triaxial test [17] 

    
         (a) εa=0.0%                        (b)  εa=5.2%                   (c)  εa=10.0%                    (d)  εa=14.4% 

Fig. 3. Particles motion in the triaxial tests scanned with CT [20] 
 

b) Dilatancy equation of the coarse-grained soils 
 
Dilatancy equation determines the relationship between the incremental plastic strain and the current 

stress state (or internal variables), which is significantly important in establishing a constitutive model. 
The following are several classical dilatancy equations.  

Equation (1) is the dilatancy equation of the original Cambridge model (Schofield & Wroth) [21] 
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In which, M is a material parameter; /q p  is the stress ratio; p
v is the plastic volumetric strain; p

s is the 
generalized plastic shear strain.  
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This original Cambridge model is proposed for “normal consolidated” or slightly “over consolidated” 
clay, but not suitable for coarse-grained soils. 

Li and Dafalias [22] proposed a dilatancy equation considering influence of the density and stress 
level on the soils, shown in Eq. (2) 
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In which, 1d , m and M are material parameters, and the state variable is defined as 

cre e         (3) 

In which e is the current void ratio; cre is the critical state void ratio. Note that this equation takes into 
account factors that are not included in classic dilatancy theories.  

In order to find a proper dilatancy equation for coarse-grained soils, several groups of test results are 
chosen, including Lechago Dam shale rock-fills [17], Shuibuya Dam Limestone rock-fills, Oroville Dam 
sandy-gravel fills [1], Diorite rock-fills [11-12]. According to Eq. (1) and Eq. (2), p p

v sd d  is related to 
stress ratio /q p  , therefore, we plot relationship of p p

v sd d  and /q p   in Figs. 4~8. According to 
the unloading stress path in Fig. 2, elastic strain is very small in coarse-grained soils; therefore, we obtain 
the following formula: 
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   Fig. 4. Lechago Dam Shale rock-fills (sample A)            Fig. 5. Lechago Dam Shale rock-fills (sample B)  
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Fig. 6. Shuibuya Dam Limestone rock-fills                          Fig. 7. Oroville Dam sandy-gravel  
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            Fig. 8. Diorite rock-fills                         Fig. 9. Plastic potential surfaces with different values of  

 
According to Figs. 4~ 8, the relationship between p p

v sd d  and stress ratio /q p  can be described 
linearly. In Fig. 8, Diorite rock-fills were sheared from a rather low confining pressure 0.4MPa to a high 
confining pressure 4.0MPa; it can be seen that, the straight line agrees well with the test results. 
Obviously, 0p p

v sd d   indicates the volume expansion, on the contrary, 0p p
v sd d   indicates the 

volume contraction. Thus, the following expression is used to describe dilatancy properties of the coarse-
grained soils 
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In which,  and gM are material parameters.  

3. EXPRESSIONS OF THE POTENTIAL SURFACE AND YIELD SURFACE 

a) Plastic potential surface 

In the proposed model, stress dilatancy equation is expressed as Eq. (5). The orthogonality condition 
is  

             0p p
v sdp d dq d           (6) 

According to Eq. (5) and Eq. (6), the following differential equation is obtained: 
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Solving the Eq. (7), expression of the plastic potential surface is written as  
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In which, gp is the intersection of the plastic potential surface and the p-axis. Plastic potential surfaces are 

depicted in Fig. 9 for different values of parameter . 
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             Fig. 10. Relationship between fM and cp p                                Fig. 11. Yield surfaces on p-q plane  

 
b) Yield surface of the proposed model 
 

It is generally accepted that friction angle of coarse-grained soils decreases with the increase of 
confining pressure. In other words, stress ratio at the failure is not constant on the p-q plane; therefore, 
stress ratio at the failure is expressed as 
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      (9) 

In which, cp is the reference crushing stress, M and n are material parameters that can be obtained by 
fitting the test data. Relationships between fM and cp p are plotted in Fig. 10. Reference crushing stress of 
each group is listed in Table.1.  

In the proposed model, yield surface is similar to the plastic potential surface, but influence of the 
mean stress p on the shape of yield surface is also included, similar to Eq. (7), a new differential equation 
is presented as Eq. (10). 
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Solving the Eq. (10) (Appendix I), expression of the yield surface is  
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               (11) 

In which, xp is the intersection of the plastic potential surface and the p-axis. Yield surfaces on p-q plane 
are depicted in Fig. 11. 

c) Hardening rule of the proposed model 

 Referencing the previous work (Nakai) [23], the relationship between the plastic volumetric strain 
and the mean stress p under isotropic compression condition could be assumed as 
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                                       (12) 

In which, tc is the compression index, ec is the swelling index, m is a coefficient for coarse-grained 
soils, ap is the atmospheric pressure. 
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Eq. (12) could be converted into the following form 
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Combining Eq. (11) with Eq. (13), the expression of the yield surface could be written as the following 
form with the plastic volumetric strain as its hardening parameter. 
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Note that, if we adopt the plastic volumetric strain p
v as the hardening parameter, the yield surface will 

shrink once soils dilate, which is not reasonable. In this study, a unified hardening parameter H developed 
by Yao et al. [16] is used. The unified hardening parameter used is written as 
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It can be seen that, when g fM M   , 0dH  , volume of the soil element contracts; when 

g fM M  , 0dH  , volume of the soil element expands; when g fM M  , the soil element reaches its 
failure state. Therefore, the unified hardening parameter always remains positive in the process of 
hardening, and can describe both the positive and negative dilatancy of soils. Eq. (17) is then used instead 
of Eq. (15). 
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4. ELASTOPLASTIC FORMULA OF THE PROPOSED MODEL  

 
For elastoplastic model, the total strain can be written as the sum of elastic strain and plastic strain. Elastic 
strain can be achieved using the Generalized Hooke’s law and two elastic parameters (i.e. elastic modulus 
and Poisson’s ratio) need to be defined. For coarse-grained soils, the elastic modulus is expressed in Eq. 
(18), and the Poisson’s ratio is assumed to be 0.3. 
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According to the elastoplastic theories, stress - strain relationship can be written as 

   epd C d             (19) 

In which, elastoplastic matrix [ ]epC is written as 
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Elastic matrix[ ]eC can be obtained using Generalized Hooke’s law. For the current model, it is easy to get 
the following relations 
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5. TEST RESULTS AND MODEL PREDICTIONS 

 
In this model, 9 parameters are to be determined, i.e. tc , ec , m , M , cp , n , , 0p , gM . Parameters tc , ec , m  
and 0p can be determined in an isotropic compression test; M , cp , n can be determined as in Fig. 10; 

gM and can be determined following the steps in Figs. 4-8. However, for coarse-grained soils, effects of 
“membrane penetration” may lead to a rather large error in measuring the volumetric strain; 
therefore, tc , ec , m and 0p can also be determined via conventional triaxial tests by optimization method [24-
25]. Model parameters of coarse-grained soils in this study are listed in Table. 1.  

Test results and model predictions are compared in Figs. 12~14. As can be seen, the proposed model 
could predict the test results with good accuracy. Fig. 13 presents the comparisons between model 
predictions and test results in drained condition and undrained condition, as can be seen, the proposed 
model predicts the drained condition better than undrained condition, which may be caused by different 
degree of particle breakage. Fig. 14 shows the validations of the proposed model under different stress 
paths (i.e. conventional triaxial tests, constant mean stress tests and constant stress ratio tests) [26]. It is 
seen from Figs. 14(a) ~(c) that the present model gives relatively good predictions of the measured stress–
strain behaviors. In particular, constant stress ratio tests results can be reasonably predicted. According to 
discussions in section 1, we know that constant stress ratio path is an important case in rock-fill dam 
engineering. Comparing the model in this study with the model proposed by Yao et al. [7], we find that, 
the model in the present study gives better predictions when specimens are along the constant stress ratio 
stress path. Fig. 15 shows the stress-strain curves predicted using crushing model (proposed by Yao et al. 
[7]); obviously, results in Fig. 14 are better. 
 

Table.1 Model parameters of the proposed model 

  tc   ec   m M pc (kPa) n P0   Mg 

Shale rock-fills A 0.0044 0.0016 0.65 1.499 1.57e3 0.148 100 0.138 1.619 

Shale rock-fills B 0.0046 0.0012 0.50 1.677 1.57e3 0.205 100 0.016 1.656 

Diorite rock-fills 0.0038 0.0021 0.40 1.695 2.58e3 0.076 100 -0.217 1.780 

Slightly Weathered Granite rock-fills 0.0047 0.001 0.70 1.547 3.80e3 0.11 100 0.400 1.652 
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(a) Shale rock-fills (sample A)                           (b) Shale rock-fills (sample B)   

Fig. 12. Comparison of experimental data with model predictions [17] 
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(a) Drained triaxial tests 
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                                                                      (b) Undrained triaxial tests  

Fig. 13. Comparison of experimental data with model predictions for Diorite rock-fills [12] 
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(a) Conventional triaxial tests               (b) Constant p tests  
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(c) Constant stress ratio tests ( 1 3R   ) 

Fig. 14. Comparison of experimental data with model predictions for Slightly Weathered  
Granite rock-fills [26] 
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Fig. 15. Predictions of the crushing model (proposed by Yao et al., 2008) under constant stress ratio stress path  

 
Therefore, it can be seen from the above comparisons that the proposed model can reasonably describe the 
stress–strain characteristics of coarse-grained soils along various stress paths. 

 
6. CONCLUSION 

 

This paper introduced a new elastoplastic model for coarse-grained soils; the dilatancy equation was 

established based on triaxial test results. Plastic potential surface was obtained by solving the dilatancy 

equation. Expression of the yield surface was developed considering the influence of the mean stress and 
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stress ratio. A unified hardening parameter was adopted so that dilatancy properties of coarse-grained soils 

can be described in the whole process of deformation. Elastoplastic formula of the proposed model was 

presented in detail. Nine model parameters could all be determined via conventional triaxial tests. The 

advantage of this model is that soil behaviors under different stress paths can be predicted. In particular, 

constant stress ratio path can also be reasonably predicted.  
 

REFERENCES 
 
1. Duncan, J. M., Byrne, P. M. & Wong, K. S. (1978). Strength stress-strain and bulk modulus parameters for finite 

element-analysis of stress and movements in soil masses. Berkeley: Report.No.VCB/GT/78-02 Berkeley 

University of California. 

2. Shen, Z. J. (1986). Elastoplastic analysis of consolidation and deformation of soft ground. Science Sinica (A 

series, Vol. XXIX, No.2, pp. 210-224. 

3. Shen, Z. J. (1990). A new constitutive model for soils. Proceedings of the 5th Chinese Conference on Soil 

Mechanics and Foundation Engineering, Beijing. 

4. Alonso, E. E., Gens, A. & Josa, A. (1990). A constitutive model for partially saturated soil. Geotechnique, Vol. 

40, No. 3, pp. 405–430. 

5. Oldecop, L. A. & Alonso, E. E. (2001). A model for rock-fill compressibility. Geotechnique, Vol. 51, No. 2, pp. 

127–139. 

6. Alonso, E. E., Olivella, S. & Pinyol, N. M. (2005). A review of Beliche Dam. Geotechnique, Vol. 55, No. 4, pp. 

267–285. 

7. Yao, Y. P., Haruyuki, Y. & Wang, N. D. (2008). Constitutive model considering sand crushing. Soils and 

foundations, Vol. 48, No.4, pp. 603-608. 

8. Yao, Y. P., Huang, G., Wang, N. D. et al. (2011). Stress-strain characteristic and three-dimensional constitutive 

model of rockfill considering crushing. Industrial Construction, Vol. 41, No. 9, pp. 12-17. 

9. Roscoe, K. H., Schofield, A. N. & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, Vol. 8, No. 1, 

pp. 22-52. [doi:10.1680 /geot.1958.8.1.22] 

10. Yao, Y. P., Wan, Z. & Chen, S. S. (2011). Dynamic UH model considering particle crushing. Chinese Journal of 

Geotechnical Engineering, Vol. 33, No. 7, pp. 1036-1044. 

11. Liu, E. L., Tan, Y. L., Chen, S. S. & Li, G. Y. (2012). Investigation on critical state of rockfill materials. Shuili 

xuebao, Vol. 43, No. 6, pp. 505-511. 

12. Liu, E. L., Chen, S. S., Li, G. Y. et al. (2012). A constitutive model for rockfill materials incorporating grain 

crushing under cyclic loading. Rock and Soil Mechanics. Vol. 33, No. 7, pp. 1972-1978. 

13. Oldecop, L. A. & Alonso, E. E. (2007). Theoretical investigation of the time-dependent behaviour of rockfill. 

Geotechnique, Vol. 57, No. 3, pp. 289–301. 

14. Zhu S., Wang, Y. M. & Xu, Q. (2011). Study of incremental rheological model of coarse grained material for 

embankment. Rock and Soil Mechanics, Vol. 32, No. 11, pp. 3201-3206. 

15. Wang, Y. M., Zhu, S., Ren, J. M. et al. (2013). Research on elastoplastic model with double yield surfaces under 

constant stress ratio path. Chinese Journal of Rock Mechanics and Engineering, Vol. 32, No.1, pp. 191-199. 

16. Yao, Y. P., Sun, D. A. & Matsuoka, H. (2008). A unified constitutive model for both clay and sand with 

hardening parameter independent on stress path. Computers and Geotechnics, Vol. 35, pp. 210–222. 

17. Alonso, E. E. (2007). Dilatancy of coarse granular aggregates. Springer Proceedings in Physics, Vol. 12, No. 3, 

pp. 19-135. [ DOI: 10.1007/3-540-69873-6_11] 

18. Terzaghi, K. (1960). Discussion on salt springs and lower bear river dams. Trans. ASCE125, pt 2, pp. 139-148. 

19. Marsal, R. J. (1973). Mechanical properties of rock-fill. In embankment dam engineering Casagrande 

volume(eds R. C. Hirschfeld & S. J. Poulos), John Wiley & Sons, New York:109-200. 



K. M. Wei and S. Zhu 
 

IJST, Transactions of Civil Engineering, Volume 38, Number C1+                                                                               March 2014 

296

20. Chen, Z. L., Wu, L. P. & Ding, H. S. (2007). Research on movement of particle of fabric of granular material, 

Rock and Soil mechanics, Vol. 28, No. supp 1, pp. 29-33 (in Chinese).  

21. Schofield, A. & Wroth, P. (1968). Critical state soil mechanics. New York: McGraw-Hill. 

22. Li, X. S. & Dafalias, Y. F. (2000). Dilatancy for cohesionless soils. Geotechnique, Vol. 50, No. 4, pp. 449-460. 

23. Nakai, T. (1989). An isotropic hardening elastoplastic model considering the stress path dependency in three-

dimensional stresses. Soils and Foundations, Vol. 29, No. 1, pp. 119-139. 

24. Kaveh, A. & Ahangaran, M. (2012). Social harmony search algorithm for continuous optimization. Iranian 

Journal of Science and Technology, Transactions of Civil Engineering, Vol. 36, No.C2, pp. 121-137. 

25. Kaveh, A. & Massoudi, M. S. (2012). Cost optimization of a composite floor system using ant colony system, 

Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 36, No.C2, pp. 139-148. 

26. Yang, G., Sun, X., Yu, Y. Z. & Zhang, B. Y. (2010). Experimental study of mechanical behavior of a coarse-

grained material under various stress paths. Rock and Soil Mechanics, Vol. 31, No. 4, pp. 1119-1122. 
 

APPENDIX I : DERIVATION OF EXPRESSION OF YIELD SURFACE 
 
According to Eq. (10), assume the yield surface has the following expression 

( )F q f p                              (25) 

Then 
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                            (27b) 

From Eq. (27b), it is easy to get the following form. 
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As can be seen Eq. (28) is an ordinary differential equation, and its solution is written as 
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In which C is a constant. Further, we can get the following expression. 
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And 
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(31) 

In an isotropic compression test; xp p and 0q  , then constant C can be determined as follows.  
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     (32) 

By substituting Eq. (32) into Eq. (31), we get the expression of the yield surface. 
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