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Abstract– Maximum deflection in a beam is a design criteria and occurs generally at or close to 
the mid-span. A methodology has been developed for continuous composite beams to predict the 
inelastic mid-span deflections, d i (considering the cracking of concrete) from the elastic mid-span 
deflections, d e (neglecting the cracking of concrete). Nine significant structural parameters have 
been identified that govern the change in mid-span deflections. Six neural networks have been 
presented to cover the entire practical range of the beams. The proposed neural networks have 
been validated for a number of beams with different number of spans and the errors are small for 
practical purposes. The methodology enables rapid estimation of inelastic deflections in 
continuous composite beams and requires a computational effort that is a fraction of that required 
for the conventional iterative or incremental analysis. The methodology can easily be extended for 
large composite building frames where a huge savings in computational effort would result.           
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1. INTRODUCTION 

 
Steel-concrete composite beams (Fig. 1a) are an integral part of steel-concrete composite bridges and 
composite frames. There may be cracking of concrete slab of continuous composite beams near interior 
supports where moments are high. This may result in moment redistribution and considerable change in 
deflections of the beam. The appropriate prediction of mid-span deflections after moment redistribution 
owing to the cracking of concrete is important from serviceability considerations. Methods are available in 
the literature for the same [1]. These methods are based either on incremental or iterative approach. Both 
approaches require a computational effort, which is many times more than that required for the elastic 
analysis (neglecting cracking). The computational effort required may be huge for large composite 
structures. The use of neural network may be made to drastically reduce the computational effort in such 
cases.  

Neural networks have been extensively applied in the various field of civil engineering. Some of the 
applications of neural networks in the field of civil/structural engineering include development of 
performance evaluation systems for concrete bridges [2,3], prediction of time effects in reinforced 
concrete frames [4], estimation of concrete strength [5, 6], prediction of web crippling strength of cold-
formed steel sheetings [7], bending moment prediction for continuous composite beams considering 
concrete cracking [8], estimation of ultimate pure bending of steel circular tubes [9], determination of 
shear strength in circular reinforced concrete columns [10], prediction of torsional strength of reinforced 
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concrete beams [11], investigatation the effect of natural and steel fibers on the performance of concrete 
[12], response prediction of offshore floating structure [13], prediction of  the performance of two rotating 
biological contactor systems in removal of hydroquinone [14], forecasting of ground water depth [15], 
prediction of response spectrum based spatially varying earthquake [16] and identification of most 
probable pollution source in rivers of Iran [17]. Recently, the feed forward back propagation neural 
network and adaptive network based fuzzy inference system (ANFIS) [18, 19] have been modeled to 
predict the deflection of high strength self compacting concrete (HSSCC) deep beams using experimental 
data.  
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Fig. 1. (a) Composite cross-section and (b) cracked span length beam element 

In this paper, a methodology using neural networks has been developed for continuous composite 
beams to predict the inelastic mid-span deflections, id  (considering the cracking of concrete) from the 
elastic mid-span deflections, ed   (neglecting the cracking of concrete). The elastic deflections can be 
obtained from any of the readily available softwares. The methodology enables rapid estimation of 
inelastic deflections and requires a computational effort that is a fraction of that required for the methods 
available in the literature. The proposed neural networks have been validated for a number of example 
beams. The errors are shown to be small for practical purposes. The methodology can easily be extended 
for large composite building frames where a very huge saving in computational effort would result.  

 
2. ITERATIVE METHOD OF ANALYSIS 

 
For generalized and efficient neural networks, a large number of training data sets are required for which a 
highly efficient method is desirable. A hybrid analytical-numerical procedure has been developed to take 
into account the nonlinear effects of concrete cracking near interior supports and time-dependent effects of 
creep and shrinkage in composite beams and frames [20, 21]. The procedure is analytical at the element 
level and numerical at the structural level. A cracked span length beam element, consisting of two cracked 
zones of length  Ax  and Bx  at the ends A and B respectively, and an uncracked zone in the middle (Fig. 
1b) has therefore been used in the procedure [20, 21]. For a completely cracked beam element of total 
length L, Ax  and Bx would be equal to L/2 and for a completely uncracked beam element Ax  and Bx  
would be equal to zero. The closed form expressions for crack lengths, flexibility matrix coefficients, end 
displacements and mid-span deflection of the cracked span length beam element are used in the procedure 
[20, 21]. Tension stiffening effect is taken into account by evaluating interpolation coefficients according 
to CEB-FIP 1993 [22].  
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The analysis considering concrete cracking is carried out using an iterative method. Consider a 
typical iterative cycle. A displacement analysis is carried out in the beginning of the cycle for the residual 
force vector of the continuous composite beam at the end of the previous cycle. Revised force vector and 
displacement vector are obtained by adding the force vector and displacement vector obtained from this 
analysis to the force vector and displacement vector at the end of the previous cycle. Crack lengths and 
interpolation coefficients are then updated according to the revised force vector. 

Changes in the cracking state of the sections (cracked or uncracked) and thereby in the end rotations 
of the beam elements lead to the difference between the displacement vector of these elements obtained 
from the displacement analysis and that obtained by the principle of virtual work involving integration of 
curvature diagram of a member. The residual force vector corresponding to this error in displacement 
vector can be obtained using the revised stiffness matrix of the beam element. 

Residual force vector of the continuous composite beam (obtained by assembling the residual force 
vector of the beam elements) should be within permissible limit [1] for the iterative process to terminate; 
otherwise a new cycle is started. Required deflections are obtained after convergence is achieved. 

The procedure has been validated by comparison with the experimental results, analytical results, and 
finite element model. 

 
3. SIGNIFICANT EXTENT OF PROPAGATION OF THE EFFECT OF CRACKING 

 
The change in mid-span deflection of a span due to cracking at a support varies with the position of the 
span with respect to the cracked support. The further the span from the support, the smaller the change. A 
preliminary numerical study is therefore carried out to estimate the significant extent of propagation of the 
effect of cracking at a support.  

For the study, a typical multi-span (number of span = n ) continuous composite beam is considered 
(Fig. 2a). The cross-sectional properties throughout the beam are kept constant, as is generally the 
practice. The nature of the elastic deflection diagram for the beam with equal spans 
( 1 2 3...... nl l l l l    , the subscripts here and subsequently in other quantities indicate either the span 
number or the support number) and the same load intensities ( 1 2 ... ....j nw w w w w     ) are shown 
in Fig. 2b. 

Let   100 d l  , the variation in elastic mid-span deflection  i ed d d    normalized with 
respect to l , be a measure of the extent of propagation of the effect of cracking at a support. A smaller 
value of   would indicate that the effect of cracking on mid-span deflection is minimal and vice versa. 

In practical cases, though the cross-sectional properties are the same throughout the beam, one of the 
spans (exterior span or next to exterior span or interior span) may be heavily loaded or may be larger than 
other spans leading to large moments at its supports and thereby to cracking. Two cases are considered 
here in detail to identify the significant extent of propagation of the effect of cracking. In case 1, it is 
assumed that an exterior span (1st span) is loaded heavily thereby leading to cracking at penultimate 
support (support 2). In case 2, it is assumed that an interior span (say 5th span) is loaded heavily thereby 
leading to cracking at its supports (supports 5 and 6). For both cases, a beam with n =10, 

( 1 to )jl j n =8.0 m and 25.12 kN-mcrM   is considered and initially the loading on the spans is kept 
equal to the cracking load, crw   (the load at which the moment at any section of the beam just becomes 
equal to crM ).  

Consider case 1. The load on 1st span is increased (Fig. 2c), keeping the loads on other spans 
constant, such that the cracking takes place only in the 1st  and  2nd spans at support 2 resulting in the 
change in mid-span deflections of the beam (Fig. 2d). This change varies with the ratio 

2/cr eM M (designated as the cracking moment ratio at support 2). Nine values 
(1.0, 0.90, 0.8, 0.7, 0.60 , 0.50, 0.40, 0.30, 0.25 ) of  2

cr eM M  resulting from the increase in 1w  are 
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considered. The magnitude of   for the cracked spans ( 1st  and  2nd spans), first span next to the right 
cracked span (2nd span), i.e. 3rd span, second span next to the right cracked span, i.e. 4th span are shown in 
Fig. 3. Only the variations 1 , 2 , 3  may be considered to be significant. 

 
 

 
Fig. 2. A typical multi-span continuous composite beam, (a) geometry and loading, (b) elastic deflection  

diagram (equal spans and equal loadings), (c) 1st  span loaded heavily, (d) elastic and inelastic  
deflection diagrams (1st span loaded heavily), (e) 5th span loaded heavily and (f) elastic  

and inelastic deflection diagrams (5th span loaded heavily) 
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Fig. 3. Variation of   for different spans with ecr MM 2  for cracking at support 2 

Now consider case 2 in which cracking occurs only in the 4th, 5th and 6th spans at two adjacent 
intermediate supports (supports 5 and 6). For this purpose, 5w  is increased (Fig. 2e) and again nine values 
of 5

cr eM M  (and 6
cr eM M ) are considered. The natures of elastic and inelastic deflection diagrams for 

this case are shown in Fig. 2f. The magnitude of   for the cracked spans (4th, 5th and  6th spans), first 
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spans next to the cracked spans (4th and 6th spans), i.e. 3rd  and  7th spans, second spans next to the cracked 
spans, i.e. 2nd and 8th spans are shown in  Fig. 4. Only 3  , 4 , 5 , 6 , 7  may be considered to be 
significant. 
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Fig. 4. Variation of   for different spans with ecr MM 5  (and 6

cr eM M ) for cracking  

at adjacent interior supports (Supports 5 and 6) 
 
Therefore, it is observed from both cases that the change in mid-span deflections may be considered 

to be significant only for the cracked spans and first spans next to the cracked spans.  
Similar numerical studies are carried out for beams with different jl , n  and crM . From these studies 

also (not reported here), similar observations are made. 
 It therefore follows that in order to establish change in the mid-span deflection of  thj  span with 

sufficient accuracy, only cracking at the supports (supports j  and 1j  ) of the span and adjacent supports 
(supports 1j   and 2j  ) needs to be considered.  

 
4. PROBABLE STRUCTURAL PARAMETERS AND SENSITIVITY ANALYSIS 

 
Let the change in mid-span deflection for a span of a beam may be expressed in the form of a non-
dimensional parameter eqd d , where eqd  = mid-span deflection of an equivalent fixed beam (uncracked 
fixed beam with the same l  and w  as those of the span).  A sensitivity analysis is carried out to determine 
the significant structural parameters governing eq

j jd d  for thj   span. The significant structural 
parameters would be the input parameters and eq

j jd d  would be the output parameter for the neural 
networks.  

For the sensitivity analysis, two span ( n =2), three span ( n =3) and nine span ( n =9) beams are 
considered. Further, nine span beam may represent all the beams having spans greater than three. 
Therefore, these sets of beams may be considered to represent continuous composite beams with any 
number of spans.  

It has been observed in the previous section that the change in mid-span deflection of thj  span is 
significantly affected by cracking at its supports (supports j  and 1j  ) and adjacent supports (supports 

1j   and 2j  ) only. Accordingly, the probable structural parameters, which may influence 
eq

j jd d with the same cross-section throughout the length of the beam (Fig. 2a), are listed below:  
1. Inertia ratio, cr unI I , where unI = transformed moment of inertia of uncracked composite 

section and crI = transformed moment of inertia of cracked section consisting of steel section 
and reinforcement only. 

2. Stiffness ratio, 1j jS S  ( un
j c jS E I l , where cE = modulus of elasticity of concrete ) , of 

adjacent spans at left support of the span. 
3. Stiffness ratio ( 1j jS S ) of adjacent spans at right support of the span.  
4. Load ratio ( 1j jw w ) of adjacent spans at left support of the span.  
5. Load ratio ( 1j jw w ) of adjacent spans at right adjacent support of the span.  
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6. Cracking moment ratio ( 1
cr e

jM M  ) at left support of the left span.  
7. Cracking moment ratio ( cr e

jM M ) at left support of the span. 
8. Cracking moment ratio ( 1

cr e
jM M  ) at right support of the span. 

9. Cracking moment ratio ( 2
cr e

jM M  ) at right support of the right adjacent span. 
The practical range for cr unI I  may be considered as 0.37-0.57 and for the other eight probable 

structural parameters as 0.25-4.0 [8]. Sensitivity studies are carried out for the left exterior span (1st span) 
of two span, three span and nine span beams and for a typical interior span (5th span) of a nine span beam. 
In these studies, only one parameter is varied at a time, keeping the other parameters constant [ average 
value of the practical range for first five probable structural parameters and average value (0.625) of the 
range (0.25-1), which involves cracking, for 1

cr e
jM M  , cr e

jM M , 1
cr e

jM M  , 2
cr e

jM M  ] . It may be 
noted that since the cross-sections of the beams are the same throughout the length, the required stiffness 
ratios 1j jS S  or 1j jS S  for the studies are achieved by varying the lengths of spans. The lengths 

( 1 to )jl j n  are initially taken as 8.0 m unless otherwise stated.  
 
a) Left exterior span 
 

Sensitivity analysis is carried out for left exterior span ( 1)j   and significant structural parameters 
are identified. For this span an imaginary span (Fig. 2a) needs to be considered for which 0w  and 0l  are 
assumed to be very small. The variation of output parameter 1 1

eqd d  with the probable structural 
parameters is studied. It may be noted that out of the nine probable structural parameters, the ratios 0 1S S , 

0 1w w , 0
cr eM M  and 1

cr eM M  need not be considered as 0 1S S , 0 1w w , 0
cr eM M  involve the 

imaginary span and moment at support 1 is always equal to zero. Additionally, cracking moment ratio 

3
cr eM M  also need not be considered for two span beam, as the moment at support 3 is always equal to 

zero.  
 
 (1) Effect of inertia ratio  cr unI I  : The stiffness of an uncracked composite section, unI , reduces to 
that of steel section and reinforcement only, crI  on cracking, which leads to change in mid-span 
deflections. Therefore, cr unI I  is considered as a probable structural parameter. The other structural 
parameters have been kept constant ( 2 1 1.00S S  , 2 1 1.0w w  0, 2 0.625cr eM M   for two span beam 
and 2 1 1.00S S  , 2 1 1.0w w  0, 2 0.625cr eM M  , 3 0.625cr eM M   for three and nine span beams). 
The variations are shown in Fig. 5 and these are significant and almost linear for all three beams. As 
expected, the redistribution is more for the lower values of cr unI I . Further, these variations can be 
represented fairly accurately by considering two values (0.37, 0.57) designated as sampling points of 

cr unI I . 
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Fig. 5. Variation of 1 1
eqd d  with cr unI I  for 2, 3 and 9 span beams 
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 (2) Effect of stiffness ratio  2 1S S  at right support: The change in mid-span deflection of a span due to 
cracking of concrete may vary with the relative stiffness of the span and adjacent spans; hence stiffness 
ratio 2 1S S  has been considered as a probable structural parameter. The other structural parameters have 
been kept constant ( 0.4547cr unI I  , 2 1 1.00w w  , 2 0.625cr eM M   for 2 span beam and 

0.4547cr unI I  , 2 1 1.00w w  , 2 0.625cr eM M  , 3 0.625cr eM M   for 3 and 9 span beams). The 
ratio 2 1S S  has been varied by varying the length of  2nd span. The variations have been plotted with 

 2 1log S S  for fair representation of the ratio 2 1S S  in both cases: (i) when it is smaller than one and (ii) 
when it is greater than one. The variations are shown in Fig. 6 and are significant for all the beams. The 
dotted portions in the figure denote small elastic deflection. Those deflections, which are less than half of 
the mid-span deflection of the fixed beam with the same properties as those of the span and subjected to 

crw , have been assumed to be small and have been neglected in the present study since these deflections 
are not important from the design point of view. The variations for all the beams (two span, three span and 
nine span beams) can be represented fairly accurately by considering five sampling points (log ( 2 1S S ) = 

0.602, 0.301, 0.0, 0.301, 0.602  ). 
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Fig. 6. Variation of 1 1

eqd d  with 2 1S S  for 2, 3 and 9 span beams  
 
 (3) Effect of load ratio  2 1w w  at right support: Ratio of loading on the span and adjacent spans may 
affect the change in mid-span deflection, therefore, 2 1w w  is also considered as a probable structural 
parameter. The other structural parameters have been kept constant ( 0.4547cr unI I  , 2 1 1.00S S  , 

2 0.625cr eM M   for two span beam and 0.4547cr unI I  , 2 1 1.00S S  , 2 0.625cr eM M  , 

3 0.625cr eM M   for three and nine span beams). The variations are shown in Fig. 7 and are significant 
for all the beams. Again, the variations for all the beams (two span, three span and nine span beams) can 
be represented fairly accurately by considering four sampling points (log ( 2 1w w ) = 

0.602, 0.0, 0.301, 0.602 ). 
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Fig. 7. Variation of  1 1

eqd d  with 2 1w w  for 2, 3 and 9 span beams 
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 (4) Effect of cracking moment ratio  2
cr eM M at right support: Since the change in mid-span 

deflection of a span varies with ratio cr eM M  at the supports of the span (Figs. 3 and 4), 2
cr eM M  is 

selected as a probable structural parameter. The other structural parameters have been kept constant as 
0.4547cr unI I  , 2 1 1.00S S  , 2 1 1.00w w   for two span beam and 0.4547cr unI I  , 2 1 1.00S S  , 

2 1 1.00w w  , 3 0.625cr eM M   for three span and nine span beams. The variations are shown in Fig. 8 
and are significant for all three beams. There is no variation in case of two span beam for 2

cr eM M  
greater than 1 as there is no cracking. Further, though the variations for all the beams are different, these 
can, however, be represented fairly accurately by considering three sampling points (log ( 2

cr eM M ) 
= 0.602, 0.0, 0.602 ). 
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Fig. 8. Variation of  1 1

eqd d  with ecr MM 2  for 2, 3 and 9 span beams 
 
 (5) Effect of cracking moment ratio  3

cr eM M  at right adjacent support: The change in mid-span 
deflection of a span depends on cracking at the adjacent supports also (Figs. 3 and 4), therefore 3

cr eM M  
is selected as a probable structural parameter for three and nine span beams. The other structural 
parameters have been kept constant ( 0.4547cr unI I  , 2 1 1.00S S  , 2 1 1.00w w  , 

2 0.625cr eM M  ). The variations are shown in Fig. 9. The variations for both beams are significant and 
tend to assume a constant value for 3

cr eM M  greater than 1. Again, though the variations for three span 
and nine span beams are different, these can be represented fairly accurately by considering three 
sampling points (log ( 3

cr eM M ) = 0.602, 0.0, 0.602 ).  
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Fig. 9. Variation of 1 1

eqd d  with 3
cr eM M  for 2, 3 and 9 span beams 

 
Similar studies for the above probable structural parameters ( cr unI I , 2 1S S , 2 1w w , 2

cr eM M  for 
two span beam and cr unI I , 2 1S S , 2 1w w , 2

cr eM M , 3
cr eM M  for three span and nine span beams) are 

carried out for ( 1, 3 to )jl j n = 4.0 m and 12.0 m also. The same variations as shown in Figs. 5-9 are 
obtained. Therefore the absolute span length is not a parameter which governs the output parameter 

eqd d  for an exterior span.  
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Further, the nature of the variations for the right exterior span of the beams, i.e. thn  span for n  span 
beams ( n =2, 3, 9) would be similar to that observed for the 1st span of the beams. 
 
b) Interior span 
 

Similar studies as performed for the sensitivity analysis of 1st span are carried out for the sensitivity 
analysis of a typical interior span (5th span, 5j  ) of nine span beam (there are no interior spans for two 
span and three span beams). There are again nine probable structural parameters [ cr unI I , 4 5S S , 6 5S S , 

4 5w w , 6 5w w , 4
cr eM M , 5

cr eM M , 6
cr eM M , 7

cr eM M ] and one output parameter [ 5 5
eqd d ].  It 

may be noted that since it is difficult to keep eight other parameters constant while carrying out sensitivity 
analysis for one parameter, keeping in view the symmetry of the beams, parameters have been varied in 
pairs.  The pairs chosen are 4 5S S , 6 5S S ; 4 5w w , 6 5w w ; 4

cr eM M , 7
cr eM M ; and 5

cr eM M , 

6
cr eM M . The variations are shown in Figs. 10-14, where dotted portions denote very small deflections as 

explained earlier. The variations are seen to be similar to corresponding variations for exterior spans, 
therefore the same sampling points as for exterior spans may also be chosen for interior span 

Again, similar studies are carried out for span lengths ( 1 to 3, 5 and 7 to 9)jl j  = 4.0 m and 12.0 m 
and the same results are obtained irrespective of the absolute span lengths, as has been observed earlier for 
the exterior span. 

 
 

 

Fig. 10. Variation of  5 5
eqd d  with cr unI I for 9 span beam 
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Fig. 11. Variation of 5 5
eqd d  with 4 5S S  and 6 5S S  for 9 span beam 
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Fig. 12. Variation of  5 5
eqd d  with 4 5w w  and 6 5w w  for 9 span beam 
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Fig. 13. Variation of 5 5
eqd d   with ecr MM 4   and 7

cr eM M  for 9 span beam 
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Fig. 14. Variation of 5 5
i eM M  with 5

cr eM M  and 6
cr eM M  for 9 span beam 
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5. NEURAL NETWORKS AND SAMPLING POINTS 
 
It is observed from the sensitivity analysis that all nine probable structural parameters cr unI I , 

 1log j jS S ,  1log j jS S ,  1log j jw w ,  1log j jw w ,  1log cr e
jM M  ,  log cr e

jM M , 

 1log cr e
jM M  ,  2log cr e

jM M   are significant. It is also observed that the magnitude of variations for 

two span, three span and nine span beams are different. Therefore two span, three span and nine span 

beams are considered separately for developing the neural networks. As has been stated earlier, nine span 

beam may represent all the beams having spans greater than three. 

Further, for each type of beam, separate neural networks have been developed for exterior spans, next 

to exterior spans and interior spans keeping in mind the involvement of imaginary spans and exterior 

supports for exterior spans and next to exterior spans. For two span beams, one network has been 

developed for exterior spans (NN1); for three span beams, two networks have been developed one each 

for exterior spans (NN2) and next to exterior spans (NN3), whereas for nine span beams three networks 

have been developed one each for exterior spans (NN4), next to exterior spans (NN5) and interior spans 

(NN6). 

The neural networks chosen in the present study are multilayered feed-forward networks with 

neurons in all the layers fully connected in feed forward manner (Fig. 15). Sigmoid function is used as an 

activation function and the back propagation learning algorithm is used for training. The back propagation 

algorithm has been used successfully for many structural engineering applications [4,5,8,10,12,14,16,18] 

and is considered as one of the efficient algorithms in engineering applications [23]. One hidden layer is 

chosen and the number of neurons in the layer is decided in the learning process by trial and error. 
 

1h 2h 8h 9h

2O1O

1I 9I

Hidden Layer

Input Layer

Output Layer

 
Fig. 15. Configuration of a typical neural network 

 
As stated earlier, the input consists of significant structural parameters, which now have been 

identified as cr unI I ,  1log j jS S ,  1log j jS S ,  1log j jw w ,  1log j jw w ,  1log cr e
jM M  , 

 log cr e
jM M ,  1log cr e

jM M  ,  2log cr e
jM M  , whereas the output consists of eq

j jd d . It has been 

noted earlier from Figs. 5-14 that the significant structural parameters and sampling points for the interior 

spans are the same as those for the exterior spans, therefore, the same significant structural parameters 

(input parameters) and sampling points may be assumed for next to exterior spans also. 

The sampling points for the input parameters are summarized in Table 1. It may be noted that 

wherever imaginary spans are involved, high values (10) of stiffness ratios are assumed for 1j jS S  and 

1j jS S . Therefore, a value of 1.0 has been indicated in the Table 1 for  1log j jS S  and  1log j jS S  

in such cases. Similarly, the values of cracking moment ratios 1
cr e

jM M  , cr e
jM M , 1

cr e
jM M   and 
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2
cr e

jM M   are also assumed to be high (10) at exterior supports and imaginary supports and therefore, 

again, a value of 1.0 has been considered for log of these cracking moment ratios. On the other hand, the 

value of load ratios 1j jw w  and 1j jw w  are assumed to be very small (0.1) wherever imaginary spans 

are involved and therefore a value of -1.0 has been considered for  1log j jw w  and  1log j jw w  in 

such cases. 

 
6. TRAINING OF NEURAL NETWORK 

 
Since the training of a neural network is an essential step in its performance, a sufficiently large database 

should be generated for the training, validating and testing. The performance of a neural network depends 

significantly on the numbers of training, validating and testing data and the domain this data covers. 

For each network, different combinations of sampling points of the input parameters and the resulting 

values of the output parameter are considered. Each such combination of the input parameters and the 

output parameter comprises a data set. Some of the combinations of input parameters are impractical, 

therefore such combinations have been ignored. Instead, additional combinations of the parameters have 

been considered wherever possible. It may be noted that the data sets for which ed  are small (defined 

earlier) have been neglected. It may be noted that for two span beams (NN1 network), two additional 

sampling points (-0.301, -0.125) for  2log cr eM M  were required to obtain good test results. The total 

number of data sets used for training, validating and testing of the networks NN1 to NN6 are 240, 476, 54, 

476, 4460, 59680 respectively. 
 

Table 1. Sampling points for input parameters   
 

Beam Span   

Input Parameters 

cr
un

I
I

 
 1i i

b

L L 

 

 1i i

b

L L 

 
1i

i

w

w
  1i

i

w

w


 

1

cr

e

i

M

M 

 cr

e

i

M

M

 

1

cr

e

i

M

M 

 

2

cr

e

i

M

M 

 

2 span 

Left exterior 0.37, 0.57 1.00 -0.602,-0.302,0,0.301,0.602 -1.00 -0.602,0,0.301,0.602 1.00 1.00 -0.602,0,0.602 1.00 

Right exterior 0.37, 0.57 -0.602,-0.301,0,0.301,0.602 1.00 -0.602,0,0.301,0.602 -1.00 1.00 -0.602,0,0.602 1.00 1.00 

3 span 

Left exterior 0.37, 0.57 1.00 -0.602,-0.301,0,0.301,0.602 -1.00 -0.602,0,0.301,0.602 1.00 1.00 -0.602,0,0.602 -0.602,0,0.602

Right exterior 0.37, 0.57 -0.602,-0.301,0,0.301,0.602 1.00 -0.602,0,0.301,0.602 -1.00 -0.602,0,0.602 -0.602,0,0.602 1.00 1.00 

Next to exterior 0.37, 0.57 -0.602,-0.301,0,0.301,0.602 -0.602,-0.301,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.301,0.602 1.00 -0.602,0,0.602 -0.602,0,0.602 1.00 

9 span 

Left exterior 0.37, 0.57 1.00 -0.602,-0.301,0,0.301,0.602 -1.00 -0.602,0,0.301,0.602 1.00 1.00 -0.602,0,0.602 -0.602,0,0.602

Right exterior 0.37, 0.57 -0.602,-0.301,0,0.301,0.602 1.00 -0.602,0,0.301,0.602 -1.00 -0.602,0,0.602 -0.602,0,0.602 1.00 1.00 

Next to left 
exterior 

0.37, 0.57 -0.602,-0.301,0,0.301,0.602 -0.602,-0.301,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.301,0.602 1.00 -0.602,0,0.602 -0.602,0,0.602 -0.602,0,0.602

Next to right 
exterior 

0.37, 0.57 -0.602,-0.301,0.,0.301,0.602 -0.602,-0.301,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.602 -0.602,0,0.602 -0.602,0,0.602 1.00 

Interior 0.37, 0.57 -0.602,-0.301,0,0.301,0.602 -0.602,-0.301,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.301,0.602 -0.602,0,0.602 -0.602,0,0.602 -0.602,0,0.602 -0.602,0,0.602

 
It may be further noted that both the left and the right exterior spans have been considered for the 

training of exterior spans of two span, three span and nine span beams and similarly both next to left 

exterior spans as well as next to right exterior spans, have been considered for training of next to exterior 

spans of 9 span beams. This makes the application of neural network simpler. 

In order to bring the output parameters in the range –1.0 to 1.0, biases are added to the output 

parameters before normalization. The biases and normalization are shown in Table 2. 
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Table 2. Details of neural networks 
 

S. No. Network Bias 
Normalization 

factor 
Configuration MSE 

1 NN1 0.000 1.00 09-15-01 0.00003

2 NN2 0.681 1.75 09-18-01 0.00003

3 NN3 0.000 1.00 09-09-01 0.00004

4 NN4 0.850 2.00 09-18-01 0.00002

5 NN5 1.200 2.50 09-23-01 0.00006

6 NN6 0.300 1.20 09-17-01 0.00012
 
The training is carried out using the Stuttgart Neural Network Simulator [24]. For each network, 70% 

of the data sets are used for the training (as training patterns) whereas 15% of the data sets are used for the 

validating and the testing each. For this partitioning, ‘hold out method’ [25], in which partitioning is done 

randomly, has been adopted. To train the neural network, back-propagation algorithm updates the weight 

and bias values to achieve a desired input-output relationship in each iteration that generates output values 

that are closer to the target values. For training, several trials are carried out with different numbers of 

neurons in the hidden layer. Care is taken that the mean square error for test results does not increase with 

the number of neurons in hidden layer or epochs (overtraining). The configurations (number of input 

parameters-number of neurons in hidden layer- number of output parameters) of all the six networks 

which yield the least mean square errors (MSE) and the corresponding mean square errors of training are 

also shown in Table 2. 
 

7. VALIDATION OF NEURAL NETWORKS 
 
Trained neural networks are validated for a number of beams with a wide variation of input parameters. 
Six example beams (EB1-EB6) are considered (Fig. 16). The value of cr unI I  for these beams is 0.4243, 
0.5144, 0.4243, 0.4547, 0.4243, and 0.4547 respectively. 
 

13.50 28.50 21.00 16.50 13.00 13.50 30.00 38.00 35.00 24.00 28.00 31.50 33.25 50.00 35.00 19.25

6.5m 7.5m 8.5m 9.5m 12.0m 11.0m 5.0m 3.0m 5.0m 6.0m 6.0m 6.0m 4.0m 3.0m 4.0m 7.0m

EB5EB4

(d) (e)

(c)(b)(a)

EB3EB2EB1
4.5m8.5m7.5m4.5m8.0m15.0m10.0m6.0m7.0m

23.8025.2023.8023.8023.7515.7518.2530.0028.00

(f)

EB6

7.5m4.5m4.5m8.9m7.8m7.5m4.75m3.8m4.5m6.0m11.0m6.25m5.0m3.0m5.0m

17.1035.1050.0020.7022.5034.2046.8050.0048.6037.8017.5532.4031.5046.8025.20

* Load is in kN/m  
Fig. 16. Example beams (a) two span beam (EB1), (b) three span beam (EB2), (c) four span beam (EB3),  

(d) six span beam (EB4), (e) ten span beam (EB5) and (f) fifteen span beam (EB6) 
 

Example beams have been chosen in such a way that most of the input parameters have not been 

considered in the training, validating or testing and none of the combinations of input parameters has been 

used in the training, validating or testing. The values of  id  for the spans, obtained from the iterative 

analysis and the neural networks, along with the percentage errors are shown in Table 3. The values have 

been reported only for those spans, for which ed  is not small. As indicated earlier, id  for more than three 

span beams have been predicted using networks developed for nine span beams (NN4- NN6). The 

maximum error in prediction of id  for any span of example beams is 5.11%. The root mean square 
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percentage error in prediction of inelastic mid-span deflections id  for the example beams is 2.22%. The 

percentage errors are therefore small for practical purposes. Also, the neural networks developed for nine 

span beam are found to be applicable for all beams having more than three spans. 
 

Table 3. Actual and predicted inelastic midpsan deflections,
id  for example beams   

 

Beam 
Span 
No. 

Elastic 
deflection 

(mm) 

Inelastic 
deflection(mm) % Error 

Actual Predicted 

EB1 
01 12.252 14.5833 14.4837 -0.6830 
02 4.8268 6.4246 6.3567 -1.0569 

EB2 
01 5.6011 6.7758 6.7756 -0.0030 
02 24.116 30.2219 30.7707 1.8159 
03 1.8271 2.3842 2.4067 0.9437 

EB3 
01 0.7541 0.7984 0.7630 -4.4339 
02 5.3430 7.4483 7.2466 -2.7075 
03 15.134 19.6674 19.4934 -0.8847 

EB4 

01 1.0393 1.4138 1.4525 2.7373 
02 8.1858 10.0792 9.9518 -1.2640 
03 6.6230 9.0510 8.9496 -1.1203 
04 7.9771 10.6132 10.4044 -1.9674 
05 16.0681 23.6722 22.6329 -4.3904 
06 29.8376 34.5995 36.3692 5.1148 

EB5 

01 4.2734 4.4839 4.4338 -1.1173 
03 2.2256 2.4781 2.4839 0.2341 
04 3.8077 4.6011 4.5844 -0.3627 
05 1.1865 1.7164 1.6938 -1.3167 
06 4.8850 5.6539 5.6443 -0.1691 
08 0.5288 0.4698 0.4830 2.8097 
10 9.4754 10.2412 10.4161 1.7078 

EB6 

01 2.8056 2.8510 2.8261 -0.8737 
03 1.63104 1.6240 1.6094 -0.8978 
04 1.64045 2.5184 2.5167 -0.0683 
05 22.5459 29.3760 29.3880 0.0411 
06 1.78479 2.7201 2.5979 -4.4947 
07 1.4820 1.6190 1.5711 -2.9586 
08 0.5011 0.4857 0.4727 -2.6846 
09 0.6318 0.9866 0.9798 -0.6933 
10 10.4580 13.0503 13.0454 -0.0372 
11 2.3552 4.0707 3.9879 -2.0331 
12 11.2542 14.0098 13.9798 -0.2145 
13 0.9885 1.20183 1.1561 -3.8025 
15 9.0295 9.9188 9.7335 -1.8682 

 
8. CONCLUSION 

 
1. In order to obtain the change in mid-span deflection of a span (say thj ) of a continuous composite 

beam with sufficient accuracy, cracking at the supports (supports j  and 1j  ) of the span and 
adjacent supports (supports 1j   and 2j  ) only needs to be considered.  

2. The significant structural parameters that govern eq
j jd d  are identified to be cr unI I , 1j jS S , 

1j jS S , 1j jw w , 1j jw w , 1
cr e

jM M  , cr e
jM M , 1

cr e
jM M  , 2

cr e
jM M  . The parameter 

eqd d  is independent of absolute span length. 
3.  Based on the methodology presented, six neural networks have been developed (Table 2) 

depending on number of spans in beams and position of spans in the beams. The neural networks 
developed for nine span beams are found to be applicable for all the beams having more than three 
spans. 
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4.  The neural networks have been validated for a number of example beams with different number 
of spans. The root mean square in prediction of inelastic deflections is found to be 2.22%, which 
is small for practical purposes.  
The application of the methodology presented herein to the composite beams is a step towards 

rapid estimation of inelastic deflections in large composite building frames where a very large 
computational effort is required in the iterative method. Further, the methodology can also be extended for 
the time-dependent analysis of composite beams and frames where a huge saving in computational effort 
would result. 

 
NOTATIONS 

 
E  modulus of elasticity  

I  transformed moment of inertia of a section about its neutral axis 
cr unI I  inertia ratio 

M  moment 
cr eM M  cracking moment ratio 

S  stiffness  

1j jS S , 1j jS S  stiffness ratios 

d  mid-span deflection 

l  span length 
n  number of spans 
w  uniformly distributed load 

1j jw w , 1j jw w  load ratios 

  variation in elastic moment with respect to l   
d  i ed d  

Subscript  

j  support or span number 

c  concrete 

Superscript  

e  elastic 
eq  equivalent 
cr  cracking 
i  inelastic 
un  uncracked 
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