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Abstract– River sediment discharge estimation is a very important process for the water resource 
management. Sediment discharge is usually calculated either from the direct measurements of 
sediment concentration or sediment transport empirical equations. Due to several difficulties in 
applying empirical equations and direct measurements, in this study a general equation is 
developed to estimate the total sediment load with a good accuracy. An artificial intelligent model 
based on Honey Bee Mating Optimization (HBMO) is used to estimate the parameters of the 
proposed equation. The set of variables in the model is based on evaluating some of the existing 
empirical equations and also the prior researches to find the dominant parameters in the sediment 
transport formulas. Based on these investigations some parameters such as average flow velocity, 
water surface slope, average flow depth, median particle diameter, water temperature and width of 
the rivers are more effective and have been selected as the dominant variables in this research. 
With consideration of the mentioned variables, this model tries to determine the coefficients and 
powers of the general equation. Three data sets of different rivers have been chosen to demonstrate 
the model. The model has been calibrated by 75% of the data and validated by the remaining 25%. 
To calculate the proposed model efficiency and validity, the results have been compared with two 
common models. Therefore, the Sediment Rating Curve (SRC) and Non Linear Regression (NLR) 
models have been applied and the statistical results have been proposed to show the model 
efficiency.           
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1. INTRODUCTION 
 

Sediment discharge estimation is required in a wide spectrum of hydraulic problems. The results would be 
useful in different hydraulic engineering fields such as design of dams, hydraulic reservoirs and channels, 
maintenance and navigability, reservoir filling, hydroelectric-equipment longevity, protection of fish and 
wildlife habitats, river aesthetics and environmental impacts assessment. Sediment load carried by rivers 
may lead to reduction in useful storage of dams and congestion in water inlets [1]. Furthermore, design of 
stable channels, estimation of aggradation and degradation at bridge piers, prediction of sand and gravel 
mining effects on river beds and determination of environmental impacts assessment and soil erosion of 
the basins are affected by sediment load transport [2-4].  

For the purpose of analysis, the total sediment load is often divided into two parts: the bed load and 
the suspended load. The total load is equal to sum of the bed load and the suspended load, but there is an 
active exchange between the bed load and the suspended load [5]. Therefore, some researchers have 
attempted to obtain the total sediment load directly, rather than summation of the bed load and the 
suspended load. Due to the method of sediment determination, the sediment load estimation equations can 
be categorized into three main groups: direct, indirect and the other methods. In the direct methods, 
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determination of the total sediment load is done directly, without making any distinction between the two 
modes of transport such as Engelund and Hansen's approach [6] and Bagnold's approach [7] which are 
based on the power concept. Similarly Ackers and White's approach [8] determines the total sediment load 
on the basis of Bagnold's stream power concept and dimensional analysis. Yang [9, 10] used an analytic 
power model, and emphasized the stream power available per unit weight of fluid to transport sediment. In 
the indirect method total sediment load can be obtained by the sum of the bed load and suspended load 
such as the modified Einstein procedure [11], Chang, Simons and Richardson approach [12], Toffaleti 
method [13] and Van-Rijn approach [14, 15]. In these methods the hydrodynamics of each mode of 
transport is not the same. Some other approaches follow the other transport functions such as Laursen [16] 
who developed a functional relationship between the flow condition and the resulting sediment discharge. 
Shen, Hung [17] and Brownlie [18, 19] derived a regression equation based on laboratory data. Similarly 
Karim and Kennedy [20] used nonlinear multiple-regression analysis to derive their equation. 

As the scientists have applied different assumptions to develop their formulas, the results come from 
various formulas not only have differences with one another, but they are also different with the measured 
quantities. Alonso, Neibling and Foster [21] and Yang [22] compared several conventional methods for 
calculating total sediment discharge [23]. Results of the researches done by Alonso et al. [21] in 1981 
showed that Yang [10], Ackers-White [8], Engelund-Hansen [6] and Laursen [16] formulas have the best 
agreement with the measured data while the Yalin [24] and Bagnold [7] formulas gave unsatisfactory 
results [25]. 

The estimation of sediment discharge is an extremely difficult task because it is closely related to the 
flow conditions, however the mechanism of their relationship is nonlinear and they have complex 
interactions to each other [26, 27]. Numerous models for predicting sediment transport discharge are 
available, however their dependability is often questionable [28, 29]. Furthermore empirical models are 
not generic and are only applicable for the cases in which they have been developed [22, 30]. 

These equations are usually based on some simplifying assumptions for flow conditions which 
seriously affect the calculated values of sediment discharge. Because of the uncertainties involved in the 
sediment discharge estimation at different flow and sediment conditions, it is difficult to recommend one 
formula to use in different field conditions. Because of these issues researchers have been looking for 
simpler, cheaper and easier methods to estimate the sediment load and they have begun to use nonlinear 
models like artificial intelligent models to solve these problems [31]. 

The main idea of this research is to represent a general equation to estimate the total sediment 
discharge in rivers. The calculation method is based on an artificial intelligent model in which the 
sediment and flow conditions are used as the input variables. The method is based on social behavior of 
bees and named Honey Bee Mating Optimization (HBMO). By this method, it is possible to estimate the 
sediment discharge of rivers with an acceptable accuracy. This model represents a general equation for the 
total sediment discharge in rivers, in which the powers and the coefficients of the input parameters vary 
for different rivers. It should be noted that the difficulties of empirical equations do not appear in this 
model. Finally, the model will be verified with some data of three rivers in the United States. Field data 
include average flow velocity, water surface slope, average flow depth, median particle size, water 
temperature, and width of the rivers. The predictive accuracy of this model is compared with those of 
some well-known existing models such as Non Linear Regression (NLR) and Sediment Rating Curve 
(SRC).  

 
2. MATHEMATICAL AND SOLUTION METHODS 

 
A Sediment Rating Curve (SRC) method represents an equation to relate sediment discharge or 
concentration to stream discharge, which can be used to estimate the sediment loads from the stream flow 
records. Generally SRC has a power equation form of  in which  is the total sediment 
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discharge,  is the water discharge, a and b are the coefficients which will be determined by regression 
analysis. By applying the SRC method in this research some data will be used to find the unknown 
coefficients in the calibration process and then the remaining data are applied to test the efficiency of the 
model for each data set. In this study, the field data published by the Geological Survey of the United 
States of America has been used to develop a predictive relationship for the sediment problem. These data 
are taken from three river stations in the United States including Susitna River near Talkeetna, Alaska 
(1982-1985), Chulitna River below Canyon near Talkeetna, Alaska (1982-1985) and Snake River near 
Anatone, Wash. (1972-1979) [32]. It is necessary to divide the data set into two categories including 
calibrating and verifying sets. Table 1 shows some statistical results done on the input data which have 
been considered as both calibration and verification sets for the SRC model.  
 

Table 1. Statistical analysis for the calibration, verification and all data sets in the SRC model 

Statistical 
Parameters 

River 
Calibration set   Verification set   All data 

Qw (m3/s)   Qs (kg/s)   Qw (m3/s)   Qs (kg/s)   Qw (m3/s)   Qs (kg/s) 

Min 

Susitna 

603   7.18   478   3.635   603   7.184 

Mean 1362.96 263.13 1329.9 297.825 1279.7143 228.08043 

Max 2190   806.8   2610   920.2   2190   718.36 

Min 

Chulitna 

520 87.5 631 50.5 520 87.5 

Mean 1036.633 581.2 1176.5 579.11 1022.9048 567.00476 

Max 1665 1814 2206 2169 1665 1814 

Min 

snake 

1756   14.249   2400   24.031   1756   14.249 

Mean 4037.73 139.56 3118.33 71.0585 3775.0476 119.98867 

Max 6010   376.72   3990   167.92   6010   376.72 
 
b) Non linear regression method 
 

Regression based models such as Non Linear Regression (NLR) are simple and easily applicable to 
solve lots of nonlinear problems [3,33]. This method relates sediment load to flow and sediment 
conditions through regression equation, which is nonlinear. The regression coefficients are determined by 
minimizing the sum of square error distances of observation points from the values expressed by the 
regression equation. The NLR model is trained by the same calibration data sets used for the other models 
to enable a correct comparison. The models predictive capability is also tested with the same data sets 
which are not used in the calibration process. Thus the results of the models are comparable. The range of 
input parameters for calibration and verification of the NLR model has been summarized in Table 2. 
 

Table 2. The range of basic parameters used as input of the NLR model in  
the calibration and verification processes 

 

Location Data 
Number of 
measuring 
stations 

Calibration Namber of 
measuring 
stations 

Verification 

Minimum Average Maximum Minimum Average Maximum 

Susitna river 
Talkeetna, Alaska 

Flow velocity (m/s) 

25 

1.5 2.088 2.7 

10 

1.2 1.95 2.7 
Width (m) 166 184.36 202 165 181.6 201 
Average depth (m) 1.2 1.728 2.4 1.1 1.72 2.4 
Water surface Slope (m/m) 0.0012 0.0014 0.0018 0.0011 0.0012 0.0014 
Temperature (oC) 0.5 9.82 14.5 3.5 8.25 12.5 
d50 (mm) 0.004 0.0667 0.25 0.004 0.0515 0.12 

Chulitna river 
below Canyon 
near Talkeetna, 
Alaska 

Flow velocity (m/s) 

30 

1.5 1.9833 2.5 

10 

1.2 1.99 2.7 
Width (m) 98.5 107.4833 119 101 105.9 120 
Average depth (m) 1.7 2.3667 3.1 1.7 2.45 3.4 
Water surface Slope (m/m) 0.0004 0.0010 0.0015 0.0004 0.0010 0.0012 
Temperature (oC) 1.5 6.1667 16.5 2 4.75 7 
d50 (mm) 0.006 0.0474 0.5 0.008 0.0292 0.062 

Snake river near 
Anatone, Wash. 

Flow velocity (m/s) 

15 

1.6 2.3667 2.9 

6 

1.9 2.1333 2.4 
Width (m) 158 179.3333 192 169 174.5 181 
Average depth (m) 3.5 4.6733 5.4 3.9 4.2833 4.7 
Water surface Slope (m/m) 0.0006 0.0009 0.00112 0.0007 0.0008 0.0009 
Temperature (oC) 8.5 12.1667 17 13 13.6667 14.5 
d50 (mm) 0.4 10.42 58 0.4 0.525 0.8 
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1. Principals of the HBMO method: Honey Bee Mating Optimization (HBMO) is inspired by social 
behavior of bees consisting of a queen, drones, workers and broods [34]. These four main castes are 
associated with the different functions in the colony including cooperative work among adults in brood 
care and nest construction, overlapping of at least two generations and division of labor [35]. The HBMO 
algorithm simulates the mating process of honey bees that is actually the mating process of the queen [36]. 
A mating-flight starts with the dance of the queen where the drones follow her and mate with her. In each 
mating, the sperm reaches the spermatheca and accumulates there to form the genetic pool of the colony 
[37]. 

The drones are the fathers of the colony and amplify their mother’s genomes without altering their 
genetic composition, except through the mutation. Worker bees specialized in brood care and sometimes 
lay eggs. Broods arise from fertilized (representing the queen or worker) and unfertilized (representing 
drones) eggs [38]. At the start of the algorithm the queen spermatheca matrix size that corresponds to the 
maximum number of the queen’s mating in a single mating flight must be defined. Each time the queen 
successfully mates with a drone the genotype of the drone is stored in the queen's spermatheca matrix and 
a variable is increased by one until the size of spermatheca is reached. Another two parameters must be 
defined, the number of queens and the number of broods that will be born by all queens. In this 
implementation of HBMO algorithm, the number of queens is set equal to one and the number of broods is 
set equal to the number corresponding to the size of the queen’s spermatheca matrix. Then the mating 
flight of the queen begins. At the start of the queen's flight, the queen is initialized with her maximum 
energy and speed, then returns to her nest when her energy is less than a threshold value and the 
spermatheca is not full [39]. In order to develop the algorithm, the capability of workers is restrained in 
brood care and thus each worker may be regarded as a heuristic that acts to improve and/or take care of a 
set of broods. At the start of a mating flight, the drones are generated randomly and the queen selects a 
drone using the following annealing function: 

  







 

 ts

f

eDQprob ),(                                                            (1) 

Where Prob (D,Q) is the probability of adding the sperm of drone D to the spermatheca of the queen, that 
is, the probability of a successful mating, Δf is the absolute difference between the fitness of drone (D) 
and the fitness of the queen (Q), and the S(t) is the speed of queen at time “t”. After each transition of 
mating, the queen’s speed and energy decline according to the following equations [36]: 
 

)()1( tSpeedtSpeed        (2) 

)()1( tEnergytEnergy       (3) 

where β is the decreasing factor (β=[0,1]). 

Initially the speed of the queen is generated at random. At the start of a mating flight, drones are 

generated randomly and the queen selects a drone using the probabilistic rule [38]. If the mating is 

successful (i.e. the drone passes the probabilistic decision rule), the drone’s sperm is stored in the queen’s 

spermatheca [36]. Workers adopt some heuristic mechanisms such as crossover or mutation to improve 

the brood’s genotype. The fitness of the resulting genotype is determined by evaluating the value of the 

objective function of the brood genotype [38]. The stages, which have been shown in the flow chart of 

Fig. 1, are the principles of the HBMO algorithm. 
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Fig. 1. Flowchart of the HBMO algorithm 

 
The range of input parameters for the calibration and verification of the HBMO model are completely the 
same as the data sets used for the NLR model. 
 

3. GENERAL EQUATION DEFINITION FOR THE  
SEDIMENT DISCHARGE PROBLEM 

 
The most dominant variables in river hydraulics are water discharge per unit width (q), water depth (D), 
longitudinal slope (S), bed shear stress ( ), sediment discharge per unit width ( tq ), particle’s median 
diameter (

50d ), sediment and fluid density ( s ) and (  ), kinematic viscosity ( ), acceleration gravity (g) 
and the particle’s fall velocity ( ) [22]. By reviewing the conventional sediment discharge equations, it 
has been found that the dominant parameters in the most sediment transport formulas are average flow 
velocity (V), water surface slope (S), average water depth (D), median particle diameter (

50d ) and width 
(W) of the rivers [25]. Water temperature affects water density and viscosity and subsequently fall 
velocity of the sediment particles, which is an important factor in the sediment transport will change. 
Therefore, the water temperature has been considered as a dominant parameter. Because of the inherent 
complexity and nonlinearity of the sediment phenomenon, a simple linear equation cannot describe the 
problem. Therefore, a general conventional form of a nonlinear equation has been considered for the 
problem. Good agreement between the values estimated by the proposed equation and the measured data 
can support the use of this equation. Therefore, the following nonlinear equation is proposed to estimate 
the total sediment load in rivers based on the above mentioned dominant parameters which are V, W, D, S, 
T and . 

654321
50654321

  dTSDWVCs                    (4) 

In this function the unknown parameters are 
1 , 

2 , 3 , 
4 , 5 , 6 , 

1 , 
2 , 3 , 

4 , 
5 , 

6  and they 

will be determined by the HBMO, NLR and SRC methods. The calibration process will occur using 75% 

of the data and the resulting equation will be validated using 25% of the remained data in each data set. 

Validity of the provided methods for each river will be controlled by three different statistical parameters 

such as Root Mean Square Errors (RMSE), Mean Absolute Errors (MAE) and regressive coefficient (R2) 

which are defined below: 
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In the above formulas Cs is the total sediment load and n is the total number of data. 
 

4. MODELS APPLICATION 
 
a) Application of HBMO algorithm 
 
By considering the mentioned non-linear equation, the objective function in the HBMO algorithm would 
be: 

The objective function = Minimize [ 654321
50654321
  dTSDWVCs  ]    (8) 

To apply the proposed algorithm for sediment load estimation, the following steps must be considered: 

Step1. Determination of the range of algorithm parameters. In this step the range of the following data 
must be defined. Size of the initial population (Nipop), the speed of the queen at the start of the mating 
flight (Smax), the speed of the queen at the end of the mating flight (Smin), the speed reduction factor (β), the 
number of iterations, the number of workers (NWorker), the number of drones (NDrone), the size of the 
queen’s spermtheca (NSperm) and the number of broods (NBrood) must be defined at the beginning of the 
algorithm. The above parameters in this study would be respectively: 1000, 1000000, 1, 0.981, 50, 10, 
500, 1500 and 1500. In order to create the initial population at the start of the algorithm, maximum and 
minimum values of unknown variables have to be defined which act as the state variables in the constraint 
functions. Table 3 shows the selected range of the mentioned state variables in this study. 
 

Table 3. State variable constraints required for the initial population creation 

Unknown variable α1 α2 α3 α4 α5 α6 β1 β2 β3 β4 β5 β6 
Min   0 -10 0 110 -10 -20 0.1 -20 0.1 10 -5 -5 
Max   10 0 10 130 20 20 15 3 10 40 3 5 

 
Step2. Input data. It includes average flow velocity (V), water surface slope (S), average water depth (D), 
median particles diameter ( 50d ), water temperature (T), width (W) of the rivers and total sediment load 
(CS). 

Step 3. Initial population generation. In this step an initial population will be generated randomly based 
on the state variables constraints which are defined in Step 1. 























NipopX

X

X

PopulationInitial
...

2

1

                   (9) 

   6543216543211
,,,,,,,,,,, 

nji xX  , i=1,2, … , Nipop     (10) 
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minminmax )( jjjj xxxrandx  ; j=1,2, … , n                     (11) 

In the above equations rand is the random function generator. 

Step4. Nonlinear function calculation. In this step the nonlinear sediment function (equation 4) is 
calculated for each member Xi by using the measured values of V, W, D, S, T and d50 and is then 
compared with the measured total sediment load, Cs for Nipop times. Then the RMSE would be determined 
for these calculated and measured values.  

Step5. Sorting. The initial population must be sorted increasingly based on the calculated values of RMSE 
in order to separate different castes of the colony. 

Step6. Queen selection. The member who has the minimum RMSE or the first member in the above 
sorted population matrix can be considered as the queen (Xbest). 

Step7. Queen speed generation. The queen speed is generated randomly with the following equation: 

minminmax )( SSSrandS Queen                    (12) 

Step8. Drones population selection. The population of drones (NDrone) will be selected from the sorted 
initial population. 























DroneND

D

D

populationDrone
...

2

1

                             (13) 

   6543216543211
,,,,,,,,,,, 

nji dD  , i=1,2, … , NDrone          (14) 

The second member till the NDrone
th member in the sorted matrix provided in step 5 will form the drone 

population matrix. 

Step9. Queen’s spermatheca matrix generation (mating flight). At the start of the mating flight, the 
queen flies with her maximum speed. A drone is randomly selected from the population of drones. The 
mating probability is calculated based on the objective function values of the queen and the selected 
drone. A number between 0 and 1 is randomly generated and compared with the calculated probability. If 
it is less than the calculated probability, the drone's sperm is stored in the queen's spermatheca and the 
queen speed is decreased. Otherwise, the queen speed is decreased and another drone from the population 
of drones is selected until the queen reaches her minimum speed or the queen's spermatheca is full. If SPi 
is the ith sperm in the queen’s spermatheca, then its matrix will be generated as follows: 
 

i
Queen

DroneQueen

S

RMSERMSE

i eprob




     i= 1, 2, …, DroneN              (15) 


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
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


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




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SP
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MatrixaSpermathec
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2

1

               (16) 

   6543216543211
,,,,,,,,,,, 

nji spSP  , i=1,2, … , NSperm           (17) 
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Step10. Broods population generation. In this paper as described above the breeding process in the 
original HBMO is implemented.  

Step11. Improvement of the selected broods with the royal jelly by workers. By implementing the 
heuristic functions and mutation operators the brood population can be improved. For this reason a 
number (equal to or less than Nworker) of individuals are randomly generated around the ith brood. Then the 
value of the objective function is evaluated for each individual. The best individual among these generated 
broods will be replaced with the ith brood. 

Step12. Objective function calculation and sorting. In this step the objective functions are calculated and 
then sorted for the new population as mentioned in the steps 4 and 5. 

Step13. Termination and criteria checking. The termination criteria will be checked in this step. If all 
criteria are satisfied the algorithm will be finished, else Nbest individuals must be selected among the 
broods matrix. They will be considered as the new population and the algorithm must be started again 
until all the convergence criteria are met. 

The calibration parameters, 1 , 
2 , 3 , 

4 , 5 , 6 , 
1 , 

2 , 3 , 
4 , 

5 , 
6  which have been 

calculated using 75% of the data in each data set are summarized in Table 4.  
 

Table 4. Estimated parameters for the sediment transport function, HBMO 
River Calibration parameters (coefficients (α) , powers (β))  

Susitna River 

α1 α2 α3 α4 α5 α6 
0.24062 -9.5049 5.4452 118.73 16.268 19.321 
β1 β2 β3 β4 β5 β6 
7.3125 -15.241 5.5331 39.001 0.38869 3.8685 

Chulitna River 

α1 α2 α3 α4 α5 α6 
10 -0.051687 0.37258 129.41 16.011 20 
β1 β2 β3 β4 β5 β6 
4.7319 -1.2063 7.2119 28.565 -5 0.35064 

Snake River 

α1 α2 α3 α4 α5 α6 
0.32745 -8.6505 0.40131 110 -6.0506 -0.0034552 
β1 β2 β3 β4 β5 β6 
6.5797 -8.3596 0.76127 36.184 -3.0911 2.2423 

 
b) Application of NLR model  
 

For the sediment estimation problem, the dependent variable Cs is affected by the independent 
variables V, W, D, S, T and d50 by the highly nonlinear equation (4). Considering this equation, NLR 
analysis is used to estimate the unknown parameters which are the coefficients and the powers of the 
equation. In this study, the regression coefficients were determined using the ordinary least square 
method. Table 5 gives the simulation results of the NLR method for the rivers. 
 

Table 5. Estimated parameters for the sediment transport function, NLR 
River Calibration parameters (coefficients (α) , powers (β))  

Susitna River 

α1 α2 α3 α4 α5 α6 
4.4405 -8.98E-15 1.4697 4 -33.187 0.83532 
β1 β2 β3 β4 β5 β6 
4.5499 6.2575 7.2534 4 -0.19999 23.748 

Chulitna River 

α1 α2 α3 α4 α5 α6 
-7784.9 1.856 0.95825 -0.073252 7600.5 0.73188 
β1 β2 β3 β4 β5 β6 
-0.0060484 1.1763 6.5673 -1.0467 -0.0012951 -0.88283 

Snake River 

α1 α2 α3 α4 α5 α6 
-31.059 -0.47161 2.2043 -52101 1.3031 0.72122 
β1 β2 β3 β4 β5 β6 
-0.88891 1.0812 3.0773 1.4853 0.98713 0.87449 
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c) Application of SRC model  
 

SRC model determines the sediment discharge (Qs) based on the water discharge (Qw) by using the 
equation in the form of  in which Qw is the input variable and Qs is the output. The SRC was 
fitted to the calibration data and the results in Table 6 have been obtained. 
 

Table 6. Estimated equation for the sediment transport function, SRC 

River Susitna Chulitna  Snake 

SRC Equation Qs=0.0001Qw
1.992 Qs=0.00019251Qw

2.1374 Qs=1.621e-009Qw
3.0007 

 

5. RESULTS AND DISCUSSION 
 
In order to compare the accuracy of the models, the resultant equations by the HBMO, NLR and SRC 
models have been applied to the same data which were not used in the calibration process. The calculated 
total sediment loads based on the three models in comparison with the measured values for the verification 
data of the three mentioned rivers are shown in Figs. 2-4. 
 

 

Fig. 2. Observed and estimated sediment discharge by the HBMO, NLR and SRC methods; Susitna River 

 

Fig. 3. Observed and estimated sediment discharge by the HBMO, NLR and SRC methods; Chulitna River 

 

Fig. 4. Observed and estimated sediment discharge by the HBMO, NLR and SRC methods; Snake river 
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It is clear from Figs. 2-4 that the HBMO model shows a better agreement with the measured values 
than the NLR and SRC models. 

The statistical analysis curves of the models are shown in Figs. 5-7. They show the correlation of the 
measured and estimated values by the three methods. 
 

 

Fig. 5. Measured sediment discharge versus calculated values by the HBMO, NLR and SRC models; Susitna river 

 

Fig. 6. Measured sediment discharge versus calculated values by the HBMO,  
NLR and SRC models; Chulitna river 

 

 

Fig. 7. Measured sediment discharge versus calculated values by the HBMO, 
 NLR and SRC models; Snake river 

 

As seen from the scatter-plots, the HBMO estimations are much closer to the measured values than 

those of the SRC and NLR methods. 

In Table 7 the statistical results of the HBMO model are compared with the NLR and SRC models. In 

this table Root Mean Square Errors (RMSE), Mean Absolute Errors (MAE) and determination coefficient 

(R2) parameters have been used to evaluate the accuracy of these models. 
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Table 7. R2, MAE and RMSE values in the sediment prediction by the three models for the verification process 

River Model R2 RMSE (kg/s) RMSE (t/day) MAE(kg/s) MAE(t/day) 

Susitna River 
HBMO 0.9645 61.866 5345.2 49.7 4294.1 
NLR 0.89649 105.64 9127.3 67.741 5852.8 
SRC 0.77306 156.42 13515 109.1 9426.4 

Chulitna River 
HBMO 0.91669 72.734 6284.2 52.24 4513.5 
NLR 0.81756 107.63 9299.5 80.289 6937 
SRC 0.68597 327.23 28273 233.94 20212 

Snake River 
HBMO 0.67711 23.808 2057 17.78 1536.2 
NLR 0.39319 33.817 2921.8 26.829 2318 
SRC 0.56282 30.232 2612 21.199 1831.6 

 
According to the data proposed in Table 7, the HBMO model has improved the statistical parameters 

in comparison with the results of the NLR and SRC methods. 
A comparison of the prediction accuracy of the models has shown that the application of the 

proposed general equation with the HBMO model is more accurate in predicting the sediment and its 
performance is better than the NLR and SRC models. Although the NLR model provided some reasonable 
results with this equation, it is not as accurate as the HBMO results. The SRC model has relatively low R2 
and has provided relatively poor load estimation in comparison with the proposed model. The lower 
performance of the SRC model shows that the water discharge is not the sole parameter to describe the 
sediment problem and it may be applied where detailed measured data are not available. Because of the 
inherent complexity and nonlinearity of the sediment phenomenon, the performance of the common 
regression models (i.e., NLR and SRC) was not suitable. Therefore, these techniques are not adequate in 
view of the complexity of the problem. The main advantages of using the proposed equation with HBMO 
model are its flexibility and ability to model nonlinear relationships. The HBMO model simulates the 
problem with an acceptable accuracy in spite of nonlinear properties of the objective function.  

Several factors must be considered in evaluating and analyzing the total sediment load data such as 
length of the records, number of the observations, accuracy of the measuring instruments and also 
accuracy of the data collections. These factors seriously affect the results of analysis. A less accurate 
measurement may lead to more error in the estimation process which can be seen in the sediment 
estimation for Snake river. 

 
6. CONCLUSION 

 
This research proposes a new model for the total sediment load estimation in rivers based on a new 
general equation and a heuristic search method (HBMO). It was developed to estimate the total sediment 
load with a good accuracy in different rivers with consideration of dominant factors. The set of variables 
in the model is based on evaluating some of the existing empirical equations and also the prior researches 
to find the dominant parameters in the sediment transport formulas. Based on these investigations some 
parameters such as average flow velocity, water surface slope, average flow depth, median particle 
diameter, water temperature and width of the rivers are more effective and have been selected as the 
dominant variables in this research. To calculate the proposed model efficiency and its validity, the results 
have been compared with the other common models. Therefore, the Sediment Rating Curve (SRC) and 
Non Linear Regression (NLR) models have been applied and the statistical results show the model 
efficiency. Overall, the simulation results on three different rivers show that the HBMO and NLR models 
seem to be more efficient than the SRC model. However the form of the proposed equation for HBMO 
and NLR models are different from that in the SRC model. Also, the difficulties of empirical equations do 
not appear in this model. The accuracy of the HBMO model was compared with those of NLR and SRC 
models. The comparison results show that the HBMO generally performs better than the NLR and SRC 
models. The main advantage of using the proposed equation with the HBMO model is its flexibility and 
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ability to model the nonlinear behavior of the sediment discharge in different rivers. Mathematically, the 
HBMO could be treated as a universal estimator in conjunction with the general equation for the sediment 
load calculation. This model can become a good estimator with great potential due to the ease of 
application and simple formulation in different rivers.  
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