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Abstract— Presented is a method of three-dimensional stability analysis of slopes due to
earthquake forces based on the Lower-bound theorem of the limit analysis approach. The method’s
aim is to determine the factor of safety of such slopes using numerical linear finite element and
lower bound limit analysis to produce seismic stability charts for three dimensional (3D)
homogeneous slopes. The rigorous limit analysis results in this paper together with results of other
researchers were found to bracket the slope stability number and therefore can be used to
benchmark for solutions from other methods. It was found that using a two dimensional (2D)
analysis to analyze a 3D problem will lead to a significant difference in the factors of safety
depending on the slope geometries. Numerical 3D seismic results of the proposed algorithm are
presented in the form of some dimensionless graphs which can be a convenient tool to be used by
practicing engineers to estimate the initial stability for excavated or man-made slopes.
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1. INTRODUCTION

Limit-equilibrium analysis has been the most popular method for slope stability calculations. A major
advantage of this approach is that complex soil profiles, seepage, and a variety of loading conditions can
be easily dealt with. Two dimensional (2D) limit equilibrium analyses, such as Bishop’s simplified
method [1] and Janbu’s simplified method [2], are two of the most popular approaches used to evaluate
slope stability. It is commonly believed that 2D solutions utilized in design will obtain a conservative
evaluation for a three dimensional (3D) slope failure. However, as pointed out by Gens et al. [3], estimates
of the mobilized shear strength derived from the 2D back analysis for a 3D slope, will be unsafe.

In order to account for the three dimensional effects on slope stability many 3D methods have been
proposed. The majority of methods proposed in these studies are simply based on extensions of Bishop’s
simplified [2], Spencer’s [4], or Morgenstern and Price’s [5] original 2D limit equilibrium slice methods.
Many comparisons of limit-equilibrium methods indicate that techniques that satisfy all conditions of
global equilibrium give similar results. Regardless of the different assumptions about the interslice forces,
these methods give values of the safety factor that differ by no more than 5%. Even though it does not
satisfy all conditions of global equilibrium, Bishop's simplified method also gives very similar results.
Partly because of this and partly because of its simplicity, the slice method of limit-equilibrium analysis
proposed by Bishop [2] has been used widely for predicting slope stability. Because of the approximate
and somewhat arbitrary nature of limit-equilibrium analysis, concern is often voiced about how accurate
these types of solutions really are. Using the limit theorems cannot only provide a simple and useful way
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of analyzing the stability of geotechnical structures, but also avoids the shortcomings of the arbitrary
assumptions underpinning the LEM. In most cases it is not feasible to perform a full displacement finite
element analysis and as such the three dimensional effects of the slope in question are often ignored.
However, ignoring the 3D effects when analyzing slopes can lead to unsafe answers. In the back analyses
of shear strengths, for example, neglecting the 3D effects, will lead to values that are too high, and
therefore affect any further stability assessments at the same location. As stated previously, one aim of this
study is to produce 3D stability seismic and static charts that can be used by practicing engineers,
extending those currently used regularly for 2D slope stability evaluation.

Currently, accepted three dimensional stability analysis solutions of slopes, available for practicing
geotechnical engineers are few. This paper is devoted to use linear finite element, lower-bound solution
method and an optimization approach to make the maximum lower bound solutions for 3D seismic slope
stability.The main purpose of this paper is to provide sets of 3D seismic and static stability charts for
homogeneous soil slopes by using the finite element bounding methods and upper-bound results of
Farzaneh and Askari [6, 7] which can bracket the actual stability numbers from above and below.

2. BACKGROUND

Numerous methods have been proposed for three dimensional slope stability analysis. In general, these
methods can be classified into the following types: (1) limit equilibrium approach (LEM) which is the
most common; (2) numerical solutions based on the finite element method (FEM); and (3) limit analysis
approach. Other methods of analysis, like the finite difference method, distinct element method, and
probability assessment are also used in current slope stability analyses. Duncan [8] provides a
comprehensive review for two dimensional (2D) and three dimensional (3D) LEM and FEM estimates of
slope stability, and therefore the review of literature herein will be referring to more recent publications
(post 1996).

- Limit analysis

The bound theorems of limit analysis are particularly useful if both upper and lower bound solutions
can be calculated, because the true collapse load can then be bracketed from above and below. This
feature is invaluable in cases for which an exact solution cannot be determined (such as slope stability
problems), because it provides a built-in error check on the accuracy of the approximate collapse load.

Figure 1 shows a typical load-displacement curve as it might be measured for a surface footing test.
The curve consists of an elastic portion; a region of transition from mainly elastic to mainly plastic
behavior; a plastic region, in which the load increases very little while the deflection increases manifold;
and finally, a work-hardening region. In a case of limit analysis, there exists no physical collapse load.
However, to know the load at which the footing will deform excessively has obvious practical importance.
For this purpose, idealizing the soil as a perfectly plastic medium and neglecting the changes in geometry
lead to the condition in which displacements can increase without limit while the load is held constant as
shown in Fig. 1.
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Fig. 1. Perfect plastic load-displacement diagram [17]
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Although the limit theorems provide a simple and useful way of analyzing the stability of
geotechnical structures, they have not been widely applied to the 3D slope stability problem. Currently,
most slope stability evaluations based on the limit theorems have used the upper bound method alone,
such as Chen et al. [9, 10], Donald and Chen [11], Farzaneh and Askari [6], De Buhan and Garnier [12],
Michalowski [13,14], and Viratjandr and Michalowski [15]. Major contributions for soil slope stability
analysis were presented by Michalowski and his co-worker who investigated local footing load effects on
the 3D slope stability [5] and provided sets of stability charts for cohesive-frictional slopes which took
seismic loadings and pore pressure into account. In addition, Michalowski [16] employed the limit
analysis technique to estimate the stability of uniformly reinforced slopes. Because of the difficulties of
constructing statically admissible stress fields manually, the application of limit analysis has in the past
almost exclusively concentrated on the upper bound method. Although the upper bound solutions may be
used as an estimate for the true collapse load, it is the lower bound solutions that are generally more useful
in practice, because they are inherently conservative.

A lower bound solution is obtained by insisting that the stresses obey equilibrium and satisfy both the
stress boundary conditions and the yield criterion. Each of these requirements imposes a separate set of
constraints on the nodal stresses. In the lower bound finite-element analysis, statically admissible stress
discontinuities are permitted at edges shared by adjacent triangles and also along borders between adjacent
rectangular extension elements [17].The finite element lower bound limit analysis techniques developed
by Lyamin and Sloan [17]and Krabbenhoft et al. [18] provide a useful method for dealing with the
problems of slope stability [17]. These numerical lower bound methods have been used to provide chart
solutions by Yu et al. [19] for 2D purely cohesive and cohesive-frictional soil slopes. In this paper, similar
formulations are used and described with newly types of elements and the effects of seismic forces are
also searched through current solution in three dimensional slopes.

By using both lower and upper bound analyses to estimate slope stability, Kim et al. [20] proposed
sets of stability charts for inhomogeneous soil slopes and cohesive-frictional soil slopes subjected to pore
pressure and seismic loadings respectively. However, their studies were only focused on investigating the
stability of 2D slopes. The purpose of the paper is to extend these charts to 3D seismic slope stability
problems. Both upper and lower bounds are employed here, and thus true failure load can be bounded.

3. PROPOSED SOLUTION

Consider a body with a volume V and surface area A, as shown in Fig. 2. Let t and q denote, respectively,
a set of fixed tractions acting on the surface area A, and a set of unknown tractions acting on the surface
area A,. Similarly, let g and h be a system of fixed and unknown body forces which act, respectively, on
the volume V. Under these conditions, the objective of a lower bound calculation is to find a stress
distribution which satisfies equilibrium throughout V, balances the prescribed tractions t on A,, nowhere
violates the yield criterion, and maximizes the integral.

Q=1/, qdA+], hav (1)

Since this problem can be solved analytically for a few simple cases only, we seek a discrete
numerical formulation which can model the stress field for problems with complex geometries,
inhomogeneous material properties, and complicated loading patterns. The most appropriate method for
this task is the finite element method.
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g +h

Fig. 2. A body subjected to the surfaces and body forces [17]

Disregarding, for the moment, the type of element that is used to approximate the stress field, any discrete
formulation of the lower bound theorem leads to a constrained optimization problem of the form [17];

*Maximize Objective Function f;(x) <0, j€]J={1,..,r} 2)
Subject to a(x)=0, iel={1,.. m}
X €ER"

Where x is an n-dimensional vector of stress and body force variables. The equalities defined by the
functions a; follow from the element equilibrium, discontinuity equilibrium, and boundary and loading
conditions, while the inequalities defined by the functions f; arise because of the yield constraints and the
constraints on applied forces. Here, Objective Function is described as safety factor of a three dimensional
slopes and a; is a global matrix which contains equilibrium, discontinuity and boundary equations. In
addition, f; produces the conditions which nodal stresses will be less than the yield surface. Maximizing
Objective Function leads to using an optimization approach. In this paper the nonlinear optimization based
on a fast quasi-Newton method whose iteration count is largely independent of the mesh refinement, is
selected for finding the maximum lower-bound solution of safety factor which satisfies the element
equilibrium, discontinuity equilibrium, and boundary and loading conditions.

4. NEWLY METHOD OF MESH GENERATION

The global form of each element in this solution is shown in Fig. 3.As it is seen the stresses variation
between each node of element is assumed to be linear, thus this type of finite element is called Linear
Finite Element. The following section gives a detailed description of the discretization procedure for the
case of 3-dimensional linear elements. There are strong reasons for choosing linear finite elements, and
not higher order finite elements, for lower bound computations mentioned by Lyamin and Sloan [17].

4

2
Fig. 3. Global form of elements

Unlike the usual form of the finite element method in which each node is unique to a particular
element, multiple nodes can share the same coordinates, and statically admissible stress discontinuities are
permitted at all inter-element boundaries. The typical 3D slope geometry details for the problem of this

paper are shown in Fig. 4.

I1JST, Transactions of Civil Engineering, Volume 38, Number C1 February 2014



Seismic stability analysis of three dimentionag|... 41

AN

L Aed---1--20
(a)
H
B FLIERXK
(b)

Fig. 4. Geometry details of problem (a). Plan (b). Section A-A

In this paper, all models are organized from some prismatic units as is shown in Fig.5. Using this type of
unit as a base of modelings, all kind of straight, convex, concave and every other arbitrary shape in plan
view of slopes can be created. Each discussed unit is combined from three volumetric pyramid elements
which are shown in Fig. 6.

1,59
Fig. 5. Prismatic unit of modelings

12 11

5 | 9

Fig. 6. Elements used for lower bound limit analysis

The global form of modellings consists of two plans which one locates at the top and the other at the
bottom of the model. Figure 7 shows the top and bottom plans of modelling. Between each pair of slices in
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the plans (1 to 12), 3 elements in the form of a prismatic unit shown in Fig. 5 are constituted. For higher
slopes, various numbers of prismatic units are used in the height of the slopes.
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(a). Bottom Plan (b). Top Plan
Fig. 7. Bottom and top plans of modelling, extension of the stress fields into a semi-infinite domain

The typical 3D slope model for the problem of this paper is shown in Fig. 8. This model consists of 12
units and therefore 36 elements.

Fig. 8. Finite element model

The extension elements may be used to extend the solution over a semi-infinite domain and therefore
provide a complete statically admissible stress field for infinite half-space problems. In fact, the extension
elements shown in Fig. 7 can be used readily to extend the stress fields into a semi-infinite domain.

Because this paper is concerned mainly with the stability of finite slopes resting on a firm base, extension
elements are needed only behind the slopes (shown in Fig. 7).

5. OBJECTIVE FUNCTION AND LOADING CONSTRAINTS

The purpose of lower bound limit analysis is to find a statically admissible stress field which maximizes
the objective function carried by a combination of surface tractions and body forces (Fig. 2). The
distribution of the latter may either be known or unknown, depending on the problem. In the terminology
of slopes stability, safety factor is known as the objective function, since this is the quantity, the aim is to

maximize in lower bound case. Otherwise the general form of the yield condition for a perfectly plastic
solid has the form

f(o) <0 3)
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Where f is a convex function of the stress components and material constants. The solution procedure
presented later in this paper does not depend on a particular type of yield function, but does require it to be
convex and smooth. Convexity is necessary to ensure the solution obtained from the optimization process
is the global optimum, and is actually guaranteed by the assumptions of perfect plasticity. Smoothness is
essential because the solution algorithm needs to compute first and second derivatives of the yield
function with respect to the unknown stresses. For yield functions which have singularities in their
derivatives, such as the Mohr—Coulomb criteria, it is necessary to adopt a smooth approximation of the
original yield surface. A plot of this function in the meridional plane is shown in Fig. 9.

Omean 4

Mohr-Cou@lb

Hyperbolic Approximation

v

“Om

Fig. 9. Hyperbolic approximation to Mohr—Coulomb yield function

Defining tensile stresses as positive, the Mohr-Coulomb yield function may be written as
f = (01 — 0;) + (01 + 0)sin@,; — 2c4c0sD,4 4)
where the principal stresses are ordered so that o; > g, > g5 and ¢; and @ are

Fs.=c/cy4 (%)
Fsy = tan(0) /tan(@,) (6)

Which C and @ denote, respectively, the cohesion and friction angle of the soil. Assuming Fs = Fs. = Fsy
the objective function defined as maximizing the safety factor by satisfying the yield function. This
implies that the stresses at all nodes in the finite element model must satisfy the yield condition.

Thus, in total, the yield conditions give rise to some non-linear inequality constraints (considering
composite yield criteria as one constraint) on the nodal stresses. Because each node is associated with a
unique set of stress variables, it follows that each yield inequality is a function of an uncoupled set of
stress variables g/;. Each admissible stress field has its own safety factor. Using an optimization method of
nonlinear programming which is based on Newton’s method the highest lower bound safety factor is
attained. In this method, the non-linear equations at the current point k are linearized and the resulting
system of linear equations is solved to obtain a new point k + 1. The process is repeated until the
governing system of non-linear equations is satisfied. Thus, the highest lower bound safety factor of
admissible stress fields is searched; this feature can be exploited to give a very efficient solution
algorithm.

When the lower bound method described previously is applied to problems with semi-infinite
domains, only part of the body is discretised. To cover the stress fields conditions in semi-infinite zones
some extension elements are deployed around the periphery of the meshes. These are constructed so that
they extend the stress field beyond the limits of the grid in such a way that it is statically admissible [17].
The proposed algorithm is concerned with the following domains:

1. Mesh generating using the plans above and below
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2. Deriving equilibrium, discontinuity and boundary matrices for each element
3. Deriving Agjpa Which attains following equation:

Aglobalxe = bglobal (7

Where x¢is unknown vector which includes the stresses in each node and the safety factor.

4. Optimizing process: This optimization is ascribing to check the maximum lower bound solution
using nonlinear programming.

5. Constraints: This algorithm contains both equality and inequality constraints. The equality
constraint is summarized in a global matrix containing equilibrium, discontinuity and boundary
equations and the inequality constraints are refer to a) Yield Surface and b) Extension elements.

The typical lower bound finite element meshes and boundary conditions used to analyze the 3D slope
problem are illustrated in Fig.8. The stability of homogeneous slopes is usually expressed in terms of two
dimensionless stability numbers in the following form

N, = yHEc ®)
Agc = Nstan®/F; 9)

Where Ns is the stability number, y is the soil unit weight, H is the slope height, Fis is the safety factor of
the slope. Also, ¢ and @ are known as the strength parameters of the material; c represents the cohesion
and @ represents the angle of internal friction.

6. COMPARISON WITH OTHER RESULTS

One of the most important parameters in analyzing is number of used elements in models. Certainly,
increasing this quantity leads to an increase in the accuracy of the results. But using a high number of
elements in modelling causes time consuming runs, therefore some models were made to compare the
results by different number of elements.

For constant quantity of k,=0.3, B=30 and A4.=2, the results for En=18,24,36 and 72 shown in Fig.
10 are compared, where kj, is seismic coefficient, B is degree of the slope and En is number of used
elements. As is seen, an increase in element numbers results in decreasing the interspaces between lower
bound and upper bound solutions, it means that by increasing the element numbers, the accuracy of the
results is increased but its rate decreases, as Fig.10 shows. Therefore, it can be concluded that for higher
number of elements, the difference between results can be connivance. Thus in this paper, all numerical
results are made of 36 elements because of low rate of variations afterwards.

For validation, the results of the current approach can be compared with those of other investigators
for slopes in static cases. Different methods have been proposed for 3D analysis of straight slopes by
Baligh and Azzouz [21], Hovland [22], Chen and Chameau [23], Ugai [24], Leshchinsky and Baker [25]
and Totonchi et al [26-28]. Comparing the current results with most of these, good agreement is found
among them. Ugai [24] extended Baker variational limiting equilibrium approach to 3D cohesive slopes.
Leshchinsky and Baker [25] extended a modified solution of variational approach in 3D stability of slopes
which has been proven to be equivalent to the upper bound solution in the framework of limit analysis.
Totonchi et al. [26, 27] used this method of solution for computing the stability of curved slopes and
acceptable stress field in retaining walls during seismic loading.

Figure 11 shows the ratio Fp/F>D (Fip is the safety factor in iD analysis) as a function of L/H
obtained by Ugai [24], Leshchinsky and Baker [25], Farzaneh and Askari [6] (the upper-bound solution)
and the present solution. According to the upper bound results and the results of the current solution, it is

I1JST, Transactions of Civil Engineering, Volume 38, Number C1 February 2014



Seismic stability analysis of three dimentionagl... 45

found that these results can bracket the slope stability numbers to £9% and therefore can be used to
benchmark for solutions from other methods.
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Fig. 10. Effect of element numbers in accuracy of results
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Fig. 11. Comparison with those of Ugai, Leshchonsky, Farzaneh-Askari in cohesive soil

7.NUMERICAL RESULTS AND DISCUSSIONS
a) Stability charts for homogeneous slopes based on the numerical limit analyses

The 3D chart solutions for homogeneous slopes due to earthquake forces obtained from the numerical
upper and lower bound analysis are displayed in Figs. 12-16for a range of slope angles (f3), seismic
coefficients (k;), and L/H ratios. It can be noted that the upper and lower bound limit analysis solutions
bracket a range of stability numbers (N;) to within £9% or better for 3D cases. The upper bound results
were collected from Farzaneh and Askari [7].

As expected, the stability number N, decreases when f§ and the L/H ratio increase. For a given f and
kn, Nyachieves the minimum value when L/H goes to infinite. This implies that the factor of safety will re-
duce with increasing L/H ratio. As is known, the plain strain analysis does not consider the resistance
provided by the two curved ends of the slip surface. The boundary resistance from these two curved ends
can be seen as 3D end boundary effect which makes the slope more stable. While increasing the L/H ratio,
the relative contributions of resistances provided by these two curved ends decrease, which means that 3D
end boundary effect reduces. Therefore, using 2D stability numbers will lead to a more conservative slope
design. Fig. 12-16 illustrate the ratio of stability numbers obtained from 3D Lower and upper bound
solutions to stability numbers obtained from 2D upper bound analysis (indicated in Table 1).These
numbers can be used for estimating the seismic stability of the slopes without retaining walls and props.

A comparison of the equivalent 2D and 3D cases can be made by investigating the factor of safety
ratio F3D/F2D for the same slope angle (B), seismic coefficient (£;), slope height (H), unit weight (y) and
dimensionless parameter (44). The ratio F3p/F,p is simply the ratio of the stability numbers (N;),n/(Ns)3p.
Figure 17 shows a sample average of the upper and lower bound ratio of Fsp/F>D for various seismic
coefficients (k;) and L/H. In this figure, the magnitude of F;p/F;p denotes the degree in which the 2D
analysis underestimated the slope stability. It should be acknowledged that the true ratio of F;p/F,phas
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been bracketed by the numerical upper and lower bound analysis within a range of +9%.Referring to Fig.
17, the ratio of F3p/F,D is found to increase with increasing 4, and decreasing L/H.

Chugh [29] analyzed a sample problem and pointed out that the difference between 2D and 3D safety
factors tends to lose significance when L/H >5. However, in some conditions the results of the current
study give the F;D/F,D ratio as high as 1.1 for the uniform slopes when L/H = 5. The difference between
the 2D and 3D factor of safety estimates is greater than 10% which would be important and is not
negligible for the back analysis of a failed slope in practice.

Table 1. 2D stability numbers from upper bound solutions (A=2)

B
kn 15 30 45 60 90
0 18.7 129 103 8.4 5.52
0.1 131 105 884 744 5.02
0.2 9.9 8.72 7.66 6.6 4.54
0.3 7.62 736 6.7 588 4.19

b) Example of application

In order to make comparisons of the factor of safety between the newly proposed 3D chart solutions and
the 2D, an example is introduced. The slope descriptions are as follows: the slope inclination =60, the
height of the slope is H = 4 m, width of the slope is L=16 m, the seismic coefficient is k;=0.2, the soil unit

weight is y = 17kN/m3, the friction angle is @ =17 degree and the cohesion is 10 kPa.
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Fig. 12. Limit analysis solution of seismic stability numbers for =15, A=2
and (a).kh=0, (b). kh=0.1, (c). kh=0.2,(d). kh=0.3

A procedure for obtaining the factor of safety by using the chart solutions presented in this study can be

summarized in the following stages.

1. From the slope descriptions, the non-dimensional parameters are A= (17x4/10)xtan 17=2. One of the
constraints for using the explained charts is that they are just for A=2 but no other cases. This constraint
can be removed by running more models and preparing some comprehensive charts.
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2. For f = 60° and k;, = 0.2, the chart solutions shown in Fig. 15¢ is employed to determine the safety
factor.

3. In Fig. 15c¢, a straight line passing through the L/H=4 is plotted. This straight line intersects with the
upper and lower bound curves, which are the 3D chart solutions of the numerical limit analysis.

4. The stability number from 2D limit equilibrium method is Nspp) = 6.6. From these intersection
points, it can back-figure the dimensionless parameter Ny(3D)/Ns(2D) from which the lower bound
solution becomes Fsi ower bounay= 0.92 and the upper bound solution becomes Fsypper bounay=1.11.
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Fig. 13. Limit analysis solution of seismic stability numbers for =30,
A=2 and (a).kh=0, (b). kh=0.1, (c). kh=0.2,(d). kh=0.3
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Fig. 14. Limit analysis solution of seismic stability numbers for =45,
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Fig. 15. Limit analysis solution of seismic stability numbers for =60,
=2 and (a).kh=0, (b). kh=0.1, (c). kh=0.2,(d). kh=0.3

The average of the upper and lower bound safety factors is 1.015 for L/H =4, considering others
conditions for L/H = 1, L/H = 2 and L/H = 3; the average of safety factors come to 1.16, 1.11 and 1.067
respectively. The safety factors for the 3D solutions are around 1 to 1.16 times that of the safety factors of
the 2D solutions. This demonstrates that the factor of safety obtained from 3D analysis will always be
larger or equal to that obtained from 2D analysis. Therefore, using 2D solution is conservative for design
and non-conservative when determining strength parameters from a back analysis of a failed slope. In
addition, the difference between the upper and lower-bound factors of safety for this example is found to
be around 16%. This difference decreases slightly when the ratio of L/H increases.

2 2
1.8 B=90,Kh=0,]\=2 18 B:go’ Kh=0.1,.‘|\=2
16 1.6
=14 =14
A =)
21 Upper Bound 12 Upper Bound
H - z ..
S 1] T e P Yo
a 08 lowerBound T - g_ 0.8 Lower Bound -
]
206 Z 06
0.4 0.4
0.2 0.2
0 . . 0 4
7] L/H
] 2 4 ] 8 10 12 0 2 4 6 8 10 12
(a) (b)
2 2
1.8 B=90, Kh=0.2, =2 18 B=90, Kh=0.3, k=2
16 ! ! 16
=14
=14
a 12 §. 12 Upper Bound
21 e g, Tttt
S 08 Lower Bound 77" T g 0.8 lowerBound T -
Z 06 Z 06
0.4 0.4
0.2 0.2
0 0

L 8 10 12 0 2 4 6 e 8 10 12

0 2 a 5 (A

Fig. 16. Limit analysis solution of seismic stability numbers for =90,
A=2 and (a).kh=0, (b). kh=0.1, (c). kh=0.2,(d). kh=0.3

I1JST, Transactions of Civil Engineering, Volume 38, Number C1 February 2014



Seismic stability analysis of three dimentionag|... 49

2 -
1.8 4
1.6 4 3
1.4 4
1.2 e

11 LowerBound = —m===__
0.8 -
06 -

K,=0.1 —

0.4 4 -
K,=0.2
0.2 4

0

Upper Bound

Fs(3D)/Fs(2D)

0 2 4 L/H 6 8 10 12

Fig. 17. Limit analysis solution of seismic stability numbers for f=15, A=2

8. CONCLUSION

Several studies have indicated that the factor of safety from a 3D analysis will be greater than that from a
2D analysis. This has been proved based on the comparisons between 2D and 3D limit analysis solutions
for the factors of safety in both seismic and static cases.

Three dimensional stability charts for homogeneous cohesive slopes have been proposed in this paper.
Based on the results presented, the following conclusions can be made:

1. It should be noted that the true ratio of F;p/F,phas been bracketed by the numerical upper and
lower bound analysis within a range of £9% or better for all cases considered. The ratio of F5p/F,D
is found to increase with increasing k;, decreasing f and decreasing L/H.

2. For the application example presented, the difference between the upper and lower bound factors
of safety is found to be around 16% and for other quantities of L/H, the safety factors for the 3D
solutions are around 1 to 1.16 times that of the safety factors of the 2D solutions.

3. The stability number N; decreases when £ and the L/H ratio increase. For a given f and k;, N,
achieves the minimum value when L/H goes to infinite. This implies that the factor of safety will
reduce with increasing L/H ratio.

4. The interspace between upper and lower bound of solutions tends to decrease by increasing L/H. It
means that for 2D slopes these solutions have the least difference. Inversely for low quantities of
L/H(L/H=1), this difference goes to be maximum.

REFERENCES

1. Bishop, A. W. (1955). The use of slip circle in stability analysis of slopes. Geotechnique, Vol. 5, No. 1, pp. 7—
17.

2. Janbu, N. & Bjerrum, L. et al. (1956). Soil mechanics applied to some engineeringproblems. Norwegian
Geotechnical Institute. Publication, Vol. 16.

3. Gens, A. & Hutchinson, J. N. et al. (1988). Three-dimensional analysis of slides incohesive soils. Geotechnique,
Vol. 38, No. 1, pp. 1-23.

4. Spencer, E. (1976). A method of analysis of the stability of embankments assuminginter-slice forces.
Geotechnique, Vol. 17, No. 1, pp. 11-26.

5. Morgenstern, N. (1963). Stability charts for earth slopes during rapid drawdown. Geotechnique, Vol. 13, pp.
121-31.

6. Farzaneh, O. & Askari, F. (2003). Three-dimensional analysis of nonhomogeneous slopes. J. Geotech.
Geoenviron. Eng. ASCE, Vol. 129, No. 2, pp. 137-45.

7. Farzaneh, O. & Askari, F. (1994). 3D stability of slopes using upper bound limit analysis method. PhD Thesis,

Tehran University.

February 2014 IJST, Transactions of Civil Engineering, Volume 38, Number C1



50

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Totonchi et al

Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng.
ASCE, Vol. 129, No. 2, pp. 577-96.

Chen, J. & Yin, J. H. et al. (2003). Upper bound limit analysis of slope stability using rigidfinite elements and
nonlinear programming. Can Geotech J., Vol. 40, pp. 742-52.

Chen, Z. & Wang, X. et al. (2001). A three-dimensional slopestability analysis method using the upper bound
theorem part I: theory andmethods. Int J Rock Mech Mi.n Sci., Vol. 38, pp. 369-78.

Donald, I. B. & Chen, Z. Y. (1997). Slope stability analysis by the upper bound approach:fundamentals and
methods. Can Geotech J, Vol. 34, pp. 853-62.

De Buhan, P. & Garnier, D. (1998). Three dimensional bearing capacity analysis of afoundation near a slope.
Soils Found, Vol. 38, No. 3, pp. 153-63.

Michalowski, R. L. (1989). Three-dimensional analysis of locally loaded slopes. Geotechnique, Vol. 39, No. 1,
pp. 27-38.

Michalowski, R. L. (2002). Stability charts for uniform slopes. J. of Geotech. Geoenviron. Eng. ASCE, vol. 128,
No. 4, pp. 351-5.

Viratjandr, C. & Michalowski, R. L. (2006). Limit analysis of submerged slopes subjected towater drawdown.
Can Geotech J., Vol. 43, pp. 802—14.

Michalowski, R. L. (1997). Stability of uniform reinforced slopes. J Geotech. Geoenviron. Eng. ASCE, Vol. 123,
No. 6, pp. 546-56.

Lyamin, A. V. & Sloan, S. W. (2002). Lower bound limit analysis using non-linear programming. /nt J Numer
Methods Eng, Vol. 55, pp. 573-611.

Krabbenhoft, K. and Lyamin, AV. et al. (2005). A new discontinuous upper bound limit analysis formulation.
Int J Numer Methods Eng., Vol. 63, pp. 1069—88.

Yu, H. S. & Salgado, R.et al. (1998). Limit analysis versus limit equilibrium for slope stability. J Geotech
Geoenviron Eng ASCE, Vol. 124, No. 1, pp. 1-11.

Kim, J. & Salgado, R. et al. (1999). Limit analysis of soil slopes subjected to pore-waterpressures. J Geotech
Geoenviron Eng ASCE, Vol. 125, No. 1, pp. 49-58.

Baligh, M. & Azzouz, A. S. (1975). End effects on stability of cohesive slopes. J. Geotech. Engrg. Div., Vol.
101, No. 11, pp. 1105-1117.

Hovland, H. J. (1977). Three-dimensional slope stability analysis method. J GeotechEngDiv ASCE, Vol. 103,
No. 9, pp. 971-86.

Chen, R. H. & Chameau, J. L. (1982). Three-dimensional limit equilibrium analysis of slopes. Geotechnique,
Vol. 32, No. 1, pp. 31-40.

Ugai, K. (1985). Three-dimensional stability analysis of vertical cohesive slopes. Soils Found, Vol. 25, No. 3,
pp. 41-8.

Leshchinsky, D. & Baker, R. (1986). Three-dimensional slope stability: end effects. Soils Found, Vol. 26, No. 4,
pp- 98-110.

Totonchi, A., Askari, F. & Farzaneh, O. (2012). 3D stability analysis of concave slopes in plan view using linear
finite element and lower bound method. lranian Journal of Science and Technology, Tramsactions of Civil
Engineering, Vol. 36, No. C2, pp. 181-194.

Totonchi, A., Askari, F. & Farzaneh, O. (2012). Analytical solution of seismic active lateral force in retaining
walls using stress fields. lranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 36,
No. C2, pp. 195-207.

Totonchi, A., Askari, F. & Farzaneh, O. (2012). 3D stability analysis of convex slopes in plan view using linear
finite element and lower bound method. International Journal of Civil Engineering, Vol. 10, No. 2.

Chugh, A. K. (2003). On the boundary conditions in slope stability analysis. Int J Numer Anal Methods
Geomech, Vol. 27, pp. 905-26.

I1JST, Transactions of Civil Engineering, Volume 38, Number C1 February 2014



