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Abstract– Presented is a method of three-dimensional stability analysis of slopes due to 
earthquake forces based on the Lower-bound theorem of the limit analysis approach. The method’s 
aim is to determine the factor of safety of such slopes using numerical linear finite element and 
lower bound limit analysis to produce seismic stability charts for three dimensional (3D) 
homogeneous slopes. The rigorous limit analysis results in this paper together with results of other 
researchers were found to bracket the slope stability number and therefore can be used to 
benchmark for solutions from other methods. It was found that using a two dimensional (2D) 
analysis to analyze a 3D problem will lead to a significant difference in the factors of safety 
depending on the slope geometries. Numerical 3D seismic results of the proposed algorithm are 
presented in the form of some dimensionless graphs which can be a convenient tool to be used by 
practicing engineers to estimate the initial stability for excavated or man-made slopes.           
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1. INTRODUCTION 
 

Limit-equilibrium analysis has been the most popular method for slope stability calculations. A major 
advantage of this approach is that complex soil profiles, seepage, and a variety of loading conditions can 
be easily dealt with. Two dimensional (2D) limit equilibrium analyses, such as Bishop’s simplified 
method [1] and Janbu’s simplified method [2], are two of the most popular approaches used to evaluate 
slope stability. It is commonly believed that 2D solutions utilized in design will obtain a conservative 
evaluation for a three dimensional (3D) slope failure. However, as pointed out by Gens et al. [3], estimates 
of the mobilized shear strength derived from the 2D back analysis for a 3D slope, will be unsafe. 

In order to account for the three dimensional effects on slope stability many 3D methods have been 
proposed. The majority of methods proposed in these studies are simply based on extensions of Bishop’s 
simplified [2], Spencer’s [4], or Morgenstern and Price’s [5] original 2D limit equilibrium slice methods. 
Many comparisons of limit-equilibrium methods indicate that techniques that satisfy all conditions of 
global equilibrium give similar results. Regardless of the different assumptions about the interslice forces, 
these methods give values of the safety factor that differ by no more than 5%. Even though it does not 
satisfy all conditions of global equilibrium, Bishop's simplified method also gives very similar results. 
Partly because of this and partly because of its simplicity, the slice method of limit-equilibrium analysis 
proposed by Bishop [2] has been used widely for predicting slope stability. Because of the approximate 
and somewhat arbitrary nature of limit-equilibrium analysis, concern is often voiced about how accurate 
these types of solutions really are. Using the limit theorems cannot only provide a simple and useful way 
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of analyzing the stability of geotechnical structures, but also avoids the shortcomings of the arbitrary 
assumptions underpinning the LEM. In most cases it is not feasible to perform a full displacement finite 
element analysis and as such the three dimensional effects of the slope in question are often ignored. 
However, ignoring the 3D effects when analyzing slopes can lead to unsafe answers. In the back analyses 
of shear strengths, for example, neglecting the 3D effects, will lead to values that are too high, and 
therefore affect any further stability assessments at the same location. As stated previously, one aim of this 
study is to produce 3D stability seismic and static charts that can be used by practicing engineers, 
extending those currently used regularly for 2D slope stability evaluation. 

Currently, accepted three dimensional stability analysis solutions of slopes, available for practicing 
geotechnical engineers are few. This paper is devoted to use linear finite element, lower-bound solution 
method and an optimization approach to make the maximum lower bound solutions for 3D seismic slope 
stability.The main purpose of this paper is to provide sets of 3D seismic and static stability charts for 
homogeneous soil slopes by using the finite element bounding methods and upper-bound results of 
Farzaneh and Askari [6, 7] which can bracket the actual stability numbers from above and below.  
 

2. BACKGROUND 
 

Numerous methods have been proposed for three dimensional slope stability analysis. In general, these 
methods can be classified into the following types: (1) limit equilibrium approach (LEM) which is the 
most common; (2) numerical solutions based on the finite element method (FEM); and (3) limit analysis 
approach. Other methods of analysis, like the finite difference method, distinct element method, and 
probability assessment are also used in current slope stability analyses. Duncan [8] provides a 
comprehensive review for two dimensional (2D) and three dimensional (3D) LEM and FEM estimates of 
slope stability, and therefore the review of literature herein will be referring to more recent publications 
(post 1996). 

 
- Limit analysis 

 
The bound theorems of limit analysis are particularly useful if both upper and lower bound solutions 

can be calculated, because the true collapse load can then be bracketed from above and below. This 
feature is invaluable in cases for which an exact solution cannot be determined (such as slope stability 
problems), because it provides a built-in error check on the accuracy of the approximate collapse load. 

Figure 1 shows a typical load-displacement curve as it might be measured for a surface footing test. 
The curve consists of an elastic portion; a region of transition from mainly elastic to mainly plastic 
behavior; a plastic region, in which the load increases very little while the deflection increases manifold; 
and finally, a work-hardening region. In a case of limit analysis, there exists no physical collapse load. 
However, to know the load at which the footing will deform excessively has obvious practical importance. 
For this purpose, idealizing the soil as a perfectly plastic medium and neglecting the changes in geometry 
lead to the condition in which displacements can increase without limit while the load is held constant as 
shown in Fig. 1. 

 
 

 

 

 

 
 

 
Fig. 1. Perfect plastic load-displacement diagram  [17] 
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Although the limit theorems provide a simple and useful way of analyzing the stability of 

geotechnical structures, they have not been widely applied to the 3D slope stability problem. Currently, 

most slope stability evaluations based on the limit theorems have used the upper bound method alone, 

such as Chen et al. [9, 10], Donald and Chen [11], Farzaneh and Askari [6], De Buhan and Garnier [12], 

Michalowski [13,14], and Viratjandr and Michalowski [15]. Major contributions for soil slope stability 

analysis were presented by Michalowski and his co-worker who investigated local footing load effects on 

the 3D slope stability [5] and provided sets of stability charts for cohesive-frictional slopes which took 

seismic loadings and pore pressure into account. In addition, Michalowski [16] employed the limit 

analysis technique to estimate the stability of uniformly reinforced slopes. Because of the difficulties of 

constructing statically admissible stress fields manually, the application of limit analysis has in the past 

almost exclusively concentrated on the upper bound method. Although the upper bound solutions may be 

used as an estimate for the true collapse load, it is the lower bound solutions that are generally more useful 

in practice, because they are inherently conservative. 

A lower bound solution is obtained by insisting that the stresses obey equilibrium and satisfy both the 

stress boundary conditions and the yield criterion. Each of these requirements imposes a separate set of 

constraints on the nodal stresses. In the lower bound finite-element analysis, statically admissible stress 

discontinuities are permitted at edges shared by adjacent triangles and also along borders between adjacent 

rectangular extension elements [17].The finite element lower bound limit analysis techniques developed 

by Lyamin and Sloan [17]and Krabbenhoft et al. [18] provide a useful method for dealing with the 

problems of slope stability [17]. These numerical lower bound methods have been used to provide chart 

solutions by Yu et al. [19] for 2D purely cohesive and cohesive-frictional soil slopes. In this paper, similar 

formulations are used and described with newly types of elements and the effects of seismic forces are 

also searched through current solution in three dimensional slopes.  

By using both lower and upper bound analyses to estimate slope stability, Kim et al. [20] proposed 

sets of stability charts for inhomogeneous soil slopes and cohesive-frictional soil slopes subjected to pore 

pressure and seismic loadings respectively. However, their studies were only focused on investigating the 

stability of 2D slopes. The purpose of the paper is to extend these charts to 3D seismic slope stability 

problems. Both upper and lower bounds are employed here, and thus true failure load can be bounded.  

 
3. PROPOSED SOLUTION 

 
Consider a body with a volume V and surface area A, as shown in Fig. 2. Let t and q denote, respectively, 

a set of fixed tractions acting on the surface area At and a set of unknown tractions acting on the surface 

area Aq. Similarly, let g and h be a system of fixed and unknown body forces which act, respectively, on 

the volume V. Under these conditions, the objective of a lower bound calculation is to find a stress 

distribution which satisfies equilibrium throughout V, balances the prescribed tractions t on At, nowhere 

violates the yield criterion, and maximizes the integral. 

    ܳ ൌ  ܣ݀	ݍ   ݄	ܸ݀
              (1) 

Since this problem can be solved analytically for a few simple cases only, we seek a discrete 

numerical formulation which can model the stress field for problems with complex geometries, 

inhomogeneous material properties, and complicated loading patterns. The most appropriate method for 

this task is the finite element method. 
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Fig. 4. Geometry details of problem (a). Plan (b). Section A-A 

 
In this paper, all models are organized from some prismatic units as is shown in Fig.5. Using this type of 

unit as a base of modelings, all kind of straight, convex, concave and every other arbitrary shape in plan 

view of slopes can be created. Each discussed unit is combined from three volumetric pyramid elements 

which are shown in Fig. 6. 

 

 
Fig. 5. Prismatic unit of modelings 

 

 
Fig. 6. Elements used for lower bound limit analysis 

 
The global form of modellings consists of two plans which one locates at the top and the other at the 
bottom of the model. Figure 7 shows the top and bottom plans of modelling. Between each pair of slices in 
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Where f is a convex function of the stress components and material constants. The solution procedure 
presented later in this paper does not depend on a particular type of yield function, but does require it to be 
convex and smooth. Convexity is necessary to ensure the solution obtained from the optimization process 
is the global optimum, and is actually guaranteed by the assumptions of perfect plasticity. Smoothness is 
essential because the solution algorithm needs to compute first and second derivatives of the yield 
function with respect to the unknown stresses. For yield functions which have singularities in their 
derivatives, such as the Mohr–Coulomb criteria, it is necessary to adopt a smooth approximation of the 
original yield surface. A plot of this function in the meridional plane is shown in Fig. 9. 

 
Fig. 9. Hyperbolic approximation to Mohr–Coulomb yield function 

 
Defining tensile stresses as positive, the Mohr-Coulomb yield function may be written as 

 

݂ ൌ ሺߪଵ െ ଶሻߪ  ሺߪଵ  ௗ∅݊݅ݏଶሻߪ െ 2ܿௗܿݏ∅ௗ                         (4) 
 

where the principal stresses are ordered so that ߪଵ  ଶߪ   ଷ and ܿௗ and ∅ௗareߪ
 

ݏܨ ൌ ܿ/ܿௗ      (5) 

∅ݏܨ ൌ tanሺ∅ሻ /tan	ሺ∅ௗሻ               (6) 

Which C and ∅ denote, respectively, the cohesion and friction angle of the soil. Assuming ݏܨ ൌ ݏܨ ൌ  ∅ݏܨ
the objective function defined as maximizing the safety factor by satisfying the yield function. This 
implies that the stresses at all nodes in the finite element model must satisfy the yield condition.  

Thus, in total, the yield conditions give rise to some non-linear inequality constraints (considering 
composite yield criteria as one constraint) on the nodal stresses. Because each node is associated with a 
unique set of stress variables, it follows that each yield inequality is a function of an uncoupled set of 
stress variables	ߪ

 . Each admissible stress field has its own safety factor. Using an optimization method of 
nonlinear programming which is based on Newton’s method the highest lower bound safety factor is 
attained. In this method, the non-linear equations at the current point k are linearized and the resulting 
system of linear equations is solved to obtain a new point k + 1. The process is repeated until the 
governing system of non-linear equations is satisfied. Thus, the highest lower bound safety factor of 
admissible stress fields is searched; this feature can be exploited to give a very efficient solution 
algorithm. 

When the lower bound method described previously is applied to problems with semi-infinite 
domains, only part of the body is discretised. To cover the stress fields conditions in semi-infinite zones 
some extension elements are deployed around the periphery of the meshes. These are constructed so that 
they extend the stress field beyond the limits of the grid in such a way that it is statically admissible [17].  
The proposed algorithm is concerned with the following domains: 

1. Mesh generating using the plans above and below 
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2. Deriving equilibrium, discontinuity and boundary matrices for each element 
3. Deriving ܣglobal which attains following equation:  

 
ݔ୪୭ୠୟ୪ܣ

 ൌ ܾ୪୭ୠୟ୪             (7) 
 

Where ݔis unknown vector which includes the stresses in each node and the safety factor. 
4. Optimizing process: This optimization is ascribing to check the maximum lower bound solution 

using nonlinear programming. 
5. Constraints: This algorithm contains both equality and inequality constraints. The equality 

constraint is summarized in a global matrix containing equilibrium, discontinuity and boundary 
equations and the inequality constraints are refer to a) Yield Surface and b) Extension elements. 

The typical lower bound finite element meshes and boundary conditions used to analyze the 3D slope 
problem are illustrated in Fig.8. The stability of homogeneous slopes is usually expressed in terms of two 
dimensionless stability numbers in the following form 

௦ܰ ൌ  ௦/ܿ        (8)ܨܪߛ

∅ߣ ൌ ௦ܰܨ/∅݊ܽݐ௦             (9) 

Where Ns is the stability number, γ is the soil unit weight, H is the slope height, Fs is the safety factor of 
the slope. Also, c and Φ are known as the strength parameters of the material; c represents the cohesion 
and Φ represents the angle of internal friction. 

 
6. COMPARISON WITH OTHER RESULTS 

 
One of the most important parameters in analyzing is number of used elements in models. Certainly, 

increasing this quantity leads to an increase in the accuracy of the results. But using a high number of 

elements in modelling causes time consuming runs, therefore some models were made to compare the 

results by different number of elements.  

For constant quantity of ݇=0.3, β=30 and ߣ∅=2, the results for En=18,24,36 and 72 shown in Fig. 

10 are compared, where ݇ is seismic coefficient, β is degree of the slope and En is number of used 

elements. As is seen, an increase in element numbers results in decreasing the interspaces between lower 

bound and upper bound solutions, it means that by increasing the element numbers, the accuracy of the 

results is increased but its rate decreases, as Fig.10 shows. Therefore, it can be concluded that for higher 

number of elements, the difference between results can be connivance. Thus in this paper, all numerical 

results are made of 36 elements because of low rate of variations afterwards. 

For validation, the results of the current approach can be compared with those of other investigators 

for slopes in static cases. Different methods have been proposed for 3D analysis of straight slopes by 

Baligh and Azzouz [21], Hovland [22], Chen and Chameau [23], Ugai [24], Leshchinsky and Baker [25] 

and Totonchi et al [26-28]. Comparing the current results with most of these, good agreement is found 

among them. Ugai [24] extended Baker variational limiting equilibrium approach to 3D cohesive slopes. 

Leshchinsky and Baker [25] extended a modified solution of variational approach in 3D stability of slopes 

which has been proven to be equivalent to the upper bound solution in the framework of limit analysis. 

Totonchi et al. [26, 27] used this method of solution for computing the stability of curved slopes and 

acceptable stress field in retaining walls during seismic loading.  

Figure 11 shows the ratio F3D/F2D (FiD is the safety factor in iD analysis) as a function of L/H 

obtained by Ugai [24], Leshchinsky and Baker [25], Farzaneh and Askari [6] (the upper-bound solution) 

and the present solution. According to the upper bound results and the results of the current solution, it is 
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found that these results can bracket the slope stability numbers to ±9%  and therefore can be used to 

benchmark for solutions from other methods. 
 

 
Fig. 10. Effect of element numbers in accuracy of results 

 
Fig. 11. Comparison with those of Ugai, Leshchonsky, Farzaneh-Askari in cohesive soil 

 
7. NUMERICAL RESULTS AND DISCUSSIONS 

 
a) Stability charts for homogeneous slopes based on the numerical limit analyses 
 
The 3D chart solutions for homogeneous slopes due to earthquake forces obtained from the numerical 
upper and lower bound analysis are displayed in Figs. 12-16for a range of slope angles (β), seismic 
coefficients (kh), and L/H ratios. It can be noted that the upper and lower bound limit analysis solutions 
bracket a range of stability numbers (Ns) to within ±9% or better for 3D cases. The upper bound results 
were collected from Farzaneh and Askari [7].  

As expected, the stability number Ns decreases when β and the L/H ratio increase. For a given β and 
kh, Ns achieves the minimum value when L/H goes to infinite. This implies that the factor of safety will re-
duce with increasing L/H ratio. As is known, the plain strain analysis does not consider the resistance 
provided by the two curved ends of the slip surface. The boundary resistance from these two curved ends 
can be seen as 3D end boundary effect which makes the slope more stable. While increasing the L/H ratio, 
the relative contributions of resistances provided by these two curved ends decrease, which means that 3D 
end boundary effect reduces. Therefore, using 2D stability numbers will lead to a more conservative slope 
design. Fig. 12-16 illustrate the ratio of stability numbers obtained from 3D Lower and upper bound 
solutions to stability numbers obtained from 2D upper bound analysis (indicated in Table 1).These 
numbers can be used for estimating the seismic stability of the slopes without retaining walls and props.  

A comparison of the equivalent 2D and 3D cases can be made by investigating the factor of safety 
ratio F3D/F2D for the same slope angle (β), seismic coefficient (kh), slope height (H), unit weight (γ) and 
dimensionless parameter (λc). The ratio F3D/F2D is simply the ratio of the stability numbers (Ns)2D/(Ns)3D. 
Figure 17 shows a sample average of the upper and lower bound ratio of F3D/F2D for various seismic 
coefficients (kh) and L/H. In this figure, the magnitude of F3D/F2D denotes the degree in which the 2D 
analysis underestimated the slope stability. It should be acknowledged that the true ratio of F3D/F2Dhas 
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Fig. 17. Limit analysis solution of seismic stability numbers for β=15, λ=2  

 
8. CONCLUSION 

 
Several studies have indicated that the factor of safety from a 3D analysis will be greater than that from a 
2D analysis. This has been proved based on the comparisons between 2D and 3D limit analysis solutions 
for the factors of safety in both seismic and static cases. 
Three dimensional stability charts for homogeneous cohesive slopes have been proposed in this paper. 
Based on the results presented, the following conclusions can be made: 

1. It should be noted that the true ratio of F3D/F2Dhas been bracketed by the numerical upper and 
lower bound analysis within a range of ±9% or better for all cases considered. The ratio of F3D/F2D 

is found to increase with increasing kh, decreasing β and decreasing L/H.  
2. For the application example presented, the difference between the upper and lower bound factors 

of safety is found to be around 16% and for other quantities of L/H, the safety factors for the 3D 
solutions are around 1 to 1.16 times that of the safety factors of the 2D solutions. 

3. The stability number Ns decreases when β and the L/H ratio increase. For a given β and kh, Ns 

achieves the minimum value when L/H goes to infinite. This implies that the factor of safety will 
reduce with increasing L/H ratio. 

4. The interspace between upper and lower bound of solutions tends to decrease by increasing L/H. It 
means that for 2D slopes these solutions have the least difference. Inversely for low quantities of 
L/H(L/H=1), this difference goes to be maximum. 
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