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Abstract– This research examines performance of semi-active control of structures using 
Magneto-Rheological (MR) dampers. Mechanical specifications of this smart fluid damper change 
by falling into the magnetic field, so by increasing intensity of magnetic field the resulting damper 
power consequently increases. In this paper, two models of 9 and 20-story buildings were first 
selected as case studies and respective specifications of these structures (mass, stiffness and 
damping matrices) were calculated using valid sources as well as analysis of structures ignoring 
axial deformations against imposed loads. Then, sample structures were simulated in a Simulink 
environment. Consequently, optimum force determination processor, control system and MR 
damper were modeled in Simulink environment and were installed on a structural system. Finally, 
the obtained results from damper equipped structure were compared with non-controlled structure.  
In semi-active control case, clipped optimal algorithm was considered as control algorithm and 
optimal classic linear control method was used to determine control power. Based on the obtained 
results, it is observed that using this control method will significantly decrease structure response, 
such that MR damper can be about 12% to 36% effective in reducing maximum lateral drift and up 
to 21% in reducing maximum acceleration. Two mechanisms are eventually offered to improve the 
function of dampers and their performance. The proposed mechanism is shown to be effective in 
reducing the capacity and number of dampers required.           

 
Keywords– Smart fluid dampers, magneto-rheological (MR) dampers, clipped optimal algorithm, linear optimal 
control algorithm, simulink modeling, mid–rise structures 
 

1. INTRODUCTION 
 

Seismic sources in most parts of the world cause earthquakes to occur and consequently leave severe 
damage behind. Accurate calculation of gravity loads is possible because of their simple behavioral nature, 
but obtaining the same result in earthquake induced loads is far beyond our reach as mid-rise buildings 
might be more affected by earthquake due to their special structural specifications. On the other hand, 
there are a large number of people in such residential or office buildings, making it more crucial that they 
be useable during and after earthquakes as any damage will jeopardize the lives of many people. Some 
research studies have already been carried out on MR dampers. Dyke et al. studied modeling and 
reduction of vibrating response of a 3-story building by using an MR damper and obtained suitable results 
to control the model. The semi-active control performance of MR damper to reduce the maximum drift, 
while requiring less energy, was better than active control performance [1, 2].  

Qu and Xu in 2001 conducted research on using ER/MR damper for semi-active control of vibration 
response of high rise structure connected to the podium structure. This smart material damper was used to 
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connect tower structure to podium structure to reduce the impact effect of tower structure when exposed to 
vibration excitations [3]. 

Iwata et al. in 2002 have described the applicability of the MR damper to base-isolated building 
structures. They proposed a simple semi-active control algorithm, which aims at controlling the hysteresis 
shape. In order to verify the effectiveness of the proposed method, shaking table tests were carried out 
using a newly-developed MR fluid damper. It was shown that the MR damper significantly improves the 
performance of base-isolated structures [4]. 

Jung et al. proposed a semi-active control strategy using MR dampers by investigating the ASCE first 
generation benchmark control problem for seismic responses of cable-stayed bridges. The modified Bouc-
Wen model was considered as a dynamic model of the MR damper. The numerical results demonstrated 
that the performance of the proposed control design is nearly the same as that of the active control system. 
In addition, semi-active control strategy has many attractive features, such as the bounded-input, bounded-
output stability and small energy requirements. The results of this preliminary investigation, therefore, 
indicated that MR dampers can be effectively used to control seismically excited cable-stayed bridges [5]. 

Amini and Karagah studied optimal placement of semi-active dampers by pole assignment method 
and showed that the optimal control analysis results in less control force and a small number of controllers 
in comparison with the non-optimal case. In most cases, the number of controllers does not have a great 
effect on the desired control performance and controlling can be done with fewer optimal controllers [6]. 

Chooi and Oyadiji conducted research on designing, modeling and testing of MR dampers using 
analytical flow solutions [7]. Ahmadian and Norris by making an experimental model in 2008 analyzed 
the performance of MR damper against the impact loads. Their model included a 55-pound load which 
dropped from 12, 24, 48, 72 and 96 inch heights and made impact velocities of 86, 127, 224, and 260 inch 
per second [8].   

Zahrai and Shafieezadeh studied the application of semi-active variable dampers for wind response 
control of tall buildings and demonstrated that the fuzzy controller is more effective than the passive 
controller in retuning the damping of the semi-active device and reducing the structural response due to 
wind excitations[9]. 

In 2009, Zasso and Resta investigated using MR damper in high rise building to reduce structure 
response against vibrations due to wind. Dampers were connected to the structure in two forms of internal 
and external braces. To improve that performance, a lever mechanism was used with MR damper. Their 
proposed mechanism had a noticeable effect on reduction of capacity and number of needed dampers [10]. 

Since research projects on seismic control of high and mid-rise structures by using magnetic smart 
fluid dampers still suffer from some deficiencies, there is a lack of information in this regard and 
presenting control algorithms as well as desirable creative strategies can significantly improve 
performance of this kind of damper. In this paper, using magnetic smart fluid dampers for seismic control 
of mid-rise structures is discussed.  

For successful function of MR dampers, they should connect two points that might have noticeable 
displacement. Therefore two mechanisms for improving the function of these kinds of dampers are offered 
and a combination of them is eventually used and comparison between the results of using new methods 
and using dampers in normal condition is made. Since the displacement across the damper is shown to be 
small, a lever mechanism is also proposed for motion magnification. Control algorithm of clipped optimal 
showed that MR dampers with the proposed lever mechanism are effective in reducing responses under 
earthquake excitations in all three models. 
 

2. DAMPER WITH MAGNETIC SMART FLUID 
 

Damping system with smart fluid is considered a kind of semi-active control instrument. This group of 
instruments includes dampers in which fluid viscosity is changeable. This change in viscosity changes 
stiffness of dampers and consequently increases or decreases their desire to absorb energy.  
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These dampers include magnetic polarized particles floating in oil and have the ability to change 
from fluid state to semi-solid matter with controllable obedience resistance in a few milliseconds or vice 
versa. This change is done by increasing or decreasing the intensity of magnetic field and as a result 
makes them helpful to controllable dampers.  

The main benefit of these dampers, compared to other semi-active vibration absorbers, is that they 
have no moveable parts except pistons and thus are very simple and reliable. Two practical examples of 
dampers application in structures are: i) two dampers containing 30-ton magnetic fluid were used in 
Tokyo in 2001, to improve response of national science and innovation museum between floors 3 and 4, 
regarded as the first application of damper (containing magnetic fluid) in an actual scale building; ii) the 
first application of magnetic fluid dampers in bridges was implemented in a cable-stayed bridge on 
Dongting Lake in Hunan, China). 
 
a) Dynamic analysis by semi-active control  
 

In the case where initial structures are controlled by dampers, system movement equation due to 
imposing control forces on linear structure is written as follows [11]: 
 

   MୗXሷ  CୗXሶ  KୗX ൌ Λfሺtሻ െ Mୗሼ1ሽൈଵXሷ ሺtሻ                                         (1) 

f (t): control forces vector  
: Matrix 0, 1 (n×1) shows the location of active dampers at freedom degrees of structure (if damper 

is installed on a stated freedom degree, corresponding element will be 1, otherwise, it is 0). 
In the case that backward–forward system is used to control structure, in which linear function 

control force is in terms of location change vector, velocity (measured responses of the structure) and 
input stimulation, we have : 

)2                                            (  fሺtሻ ൌ CଵXሶ ሺtሻ  KଵXሺtሻ െ Mଵሼ1ሽൈଵXሷ ሺtሻ  

Where  Cଵ, Kଵ, Mଵ are the matrices of corresponding control.  
By substituting corresponding control force to equation 1, we have:  

 
 )3 (                 MୗXሷ  ሺCୗ െ ΛCଵሻXሶ  ሺKୗ െ ΛKଵሻX ൌ െሺMୗ  Mଵሻሼ1ሽൈଵXሷ ሺtሻ						  

 
Comparing equations 1 and 3 shows the influence of forward control is modification of mechanical 

specifications of the structure (stiffness and damping) in order to improve its seismic performance. In 
addition, choosing control matrices		Cଵ,Kଵ, Mଵ depends on the type of selected control algorithm. 
 
b) Modified Bouc–wen dynamic model  
 

This model consists of a viscous damper tied with original Bouc-wen model in series and a spring 
which works in parallel with the whole system [12]. 

Produced force by damper in modified Bouc-wen model is described as follows:  

)4(                     F ൌ αz  C୭ሺxሶ െ yሶ ሻ  Kሺx െ yሻ  Kଵሺx െ xሻ ൌ Cଵyሶ  Kଵሺx െ xሻ                               

Where z is an evolutionary variable that accounts for the history dependence of the response. The 
evolutionary variables z and y are governed by: 
 

 zሶ ൌ െγ|xሶ െ yሶ |z|z|୬ିଵ െ βሺxሶ െ yሶ ሻ|z|୬  Aሺxሶ െ yሶ ሻ                                (5) 
 

 Yሶ ൌ
ଵ

େబ	ାେభ
ሼαz  Cxሶ  k୭	ሺx െ yሻሽ                                            (6) 

 
In which Kଵ=accumulator stiffness; C୭=viscous damping at large velocities; Cଵ=viscous damping for 

force roll off at low velocities; K=stiffness at large velocities; x =relative displacement of one end of the 
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MR damper; xሶ=the piston velocity, y=internal displacement of the MR damper, and x=initial 
displacement of spring	K1.   

To determine a model which is valid under fluctuating input voltage, the functional dependence of 

the parameters on the input voltage must be determined. Since the fluid yield stress is dependent on input 

voltage, α can be assumed as a function of the input voltage v. Moreover, as determined from the 

experiment results, C୭, and c1 are also functions of the input voltage. 

γ, β , and A are the parameters that control the shape of the hysteresis loops in Bouc-Wen yielding 

element. Finally, α and n are other parameters that refer to the internal state z and determine its coupling 

with the force f and its evolution.  

To specify a model dependent on volatile magnetic field, relation of damper parameters with exerted 

voltage should be determined. Since MR fluid yielding resistance changes directly with intensity of 

magnetic field, parameter α in Eqs. (7) to (9) is regarded as a function of an exerted voltage.  

Changes in obedience tension depend on linear input voltage and have initial value of non-zero at 

voltage 0. This non-zero value is related with additive matter to MR fluid in order to sustain its 

sedimentary endurance. In addition, fixed damping coefficients change with exerted voltages in a linear 

manner. Therefore parameters,	C0, Cଵ should be considered as functions of input current into the damper. 

The relationship between MR dampers input current and input voltage using these coefficients is defined 

as follows [13]: 

)7                                             (                        α ൌ αሺuሻ ൌ αୟ  αୠu  

)8                                                (             Cଵ ൌ Cଵሺuሻ ൌ Cଵୟ  Cଵୠu  

)9(                                                               C ൌ Cሺuሻ ൌ Cୟ  Cୠ  

In these equations, value of u is calculated from the following differential equation, where V is input 
voltage to MR damper:  

)10                                                                  (uሶ ൌ െηሺu െ Vሻ  

The above Eq is necessary to model the dynamics involved in reaching rheological equilibrium and in 

driving the electromagnet in the MR damper. 

Other parameters (η, n  ، A  ، y  ،β ، αୠ   ، αα   ، x  ، k୍  ، k୭  ، Cଵୠ  ، Cଵα  ، Cୠ   ، Cα) are fixed coefficients that are 

calculated by adjusting the behavior of MR damper obtained from the laboratory data. 

Table 1 provides the optimized parameters for the dynamic model that were determined to best fit the 

data based on the experimental results of a 20-ton MR damper [5]. In order to obtain the parameters for 

the 100-ton (i.e., 1000kN) damper considered in this study, the experimental data of the 20-ton damper 

have been linearly scaled up 5 times in the damper force. 
 

Table 1. Parameters of the dynamic model for MR damper [5] 

 

Value Parameter Value Parameter 

46.2         kN/m α 110        kN.sec/m C 

41.2         kN/m/V αୠ 114.3     kN.sec/m/V Cୠ 

164          mିଶ γ 0.01       kN/m k୭ 

164          mିଶ β 8359      kN.sec/m Cଵ 

1107.2 A 7482.9   kN.sec/m/V Cଵୠ 

2 n 0.485     kN/m k୍ 

100          secିଵ η 0            m x 
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Table 4. The response reduction for the controlled models with lever mechanism  
subjected to the Kobe and Northridge earthquakes 

 
Northridge Kobe   

 
Absolute acceleration Drift Absolute acceleration Drift 

23%  24% 6% 15% 9 (With 2 Dampers) 

22% 26% 12%  19% 20 (With 3 Dampers) 

 
6. CONCLUSION 

 
In this paper, two models of 9 and 20-story buildings were first selected as case studies and then sample 
structures, optimum force determination process, control system and MR damper were simulated in a 
Simulink environment. In semi-active control case, clipped optimal algorithm was considered as control 
algorithm and optimal classic linear control method was used to determine control power.  

1. With respect to the results obtained in this study, it is found that using MR damper is extremely 
effective in structural seismic response control. In maximum drift reduction perspective, the 
damper can be effective to reduce peak lateral drift about 12% to 36 %. For the above amounts the 
maximum reduction is for the Northridge earthquake with 36% and the least amount is related to 
the Kobe earthquake with 12% in the 20-story structure.  

2. In maximum absolute acceleration reduction perspective, the damper can be effective in reducing 
structural peak acceleration 1- 21%. The maximum reduction is related to the 9-story structure 
with 21% and the least amount is related to the 20-story structure subjected to the Kobe, 
earthquakes while the peak accelerations in controlled and uncontrolled state are equal. 

3. RMS displacement and absolute acceleration were reduced 33-71 % and 7-58%, respectively. 
4. When moving MR dampers to the upper floors, they have better contribution to relative 

displacement reduction. It is due to the fact that displacement and velocity are assumed as main 
input values and by increasing these amounts, better performance for damper would appear.  

5. In structures with high number of floors, drift can be desirably decreased by increasing the 
number of dampers. 

Two mechanisms are eventually offered to improve the function of dampers and their performance. 
Lever mechanism improved MR damper function 15-26% and 6-23%, respectively in maximum drift and 
absolute acceleration reduction perspectives, compared to normal condition. 

The results of this limited investigation, therefore, indicate that the two proposed mechanisms for MR 
dampers can not only be effectively used to seismically control mid-rise structures, but also to reduce the 
required number of dampers. 

 
Acknowledgments: The authors wish to acknowledge the support provided by college of engineering at 
the University of Tehran.  
 

REFERENCES 
 
1. Dyke, S. J., Spencer, Jr. B. F., Sain, M. K. & Carlson, J. D. (1998). An experimental study of MR dampers for 

seismic protection. Smart Materials & Structures, Vol. 7, No. 5, pp. 693-703.  

2. Yang, G., Spencer, Jr. B. F., Carlson, J. D. & Sain, M. K. (2002). Large-scale MR fluid dampers: modeling and 

dynamic performance considerations. Engineering Structures, Vol. 24, pp. 309-323. 

3. Qu, W. L & Xu, Y. L. (2001). Semi-active control of seismic response of tall buildings with podium structure 

using ER/MR dampers. The structural design of tall buildings, Vol. 10, No. 3, pp. 179-192(14). 

Number of story 
Percent 

of reduction 



S. M. Zahrai and H. Salehi 
 

IJST, Transactions of Civil Engineering, Volume 38, Number C1                                                                            February 2014 

36

4. Iwata, N., Hata, K., Sodeyama, H., Sunakodac, K., Fujitani, H. & Soda, S. (2002). Application of MR damper to 

base-isolated structures. Smart Structures and Materials 2002: Smart Systems for Bridges, Structures and 

Highways, Vol. 4696-45, pp 352-362.  

5. Jung, Hyung-Jo· Spencer & Billie F· Lee, In-Won (2003). Control of seismically excited cable-stayed bridge 

employing magneto rheological fluid dampers. Journal of Structural Engineering, Vol. 129, Issue 7, p. 873. 

6. Amini, F. & Karagah, H. (2006). Optimal placement of semi active dampers by pole assignment method. 

Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 30, No. B1 pp. 31-41. 

7. Chooi, W. W. & Oyadiji, S. O. (2008). Design, modeling and testing of magneto-rheological (MR) dampers 

using analytical flow solutions. Computers and Structures, Vol. 86, pp. 473–482. 

8. Ahmadian, M. & Norris, J. A. (2008). Experimental analysis of magneto- rheological dampers when subjected to 

impact and shock loading. Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 9, pp. 

1978-1985. 

9. Zahrai, S. M. & Shafieezadeh, A. (2009). Semi-active control of the wind-excited benchmark tall building using 

a fuzzy controller. Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 33, No. B1, pp 

1-14. 

10. Zasso, A., Aly, A. M. & Resta., F. (2009). MR dampers with lever mechanism for response reduction in high-

rise buildings under wind loads. European African Conference on Wind Engineering (EACWE05), Florence, 

Italy. 

11. Jansen, L. M & Dyke, S. J. (2000). Semi-active control strategies for the MR damper: A comparative study. 

Journal of Engineering Mechanics, ASCE, Vol. 126, No. 8, pp. 795-803. 

12. Spencer, Jr., Dyke, S. J., Sain, M. K. & Carlson, J. D. (1997). Phenomenological model of a magnetorheological 

damper. Journal of Engineering Mechanics, Vol. 123, No. 3, pp.230-238. 

13. Yoshida, O. & Dyke, S. J. (2005). Response control in full scale irregular buildings using MR dampers. Journal 

of Structural Engineering , Vol. 131, Issue 5, pp. 699-853. 

14. Datta, T. K. (2003). A state-of-the-art review on active control of structures. ISET Journal of Earthquake 

Technology, Vol. 40, No. 1, pp. 1-17. 

15. Kwok, N. M., Nguyen, T. H., Ha, Q. P., Li, J. & Samali, B. (2007). MR damper structural control using a multi-

level sliding mode controller. Australian Earthquake Engineering Society Conference (AEES 2005), Albury, 

Australia. 

16. Dyke, S. J., Ohtori, Y., Christenson, R. E & Spencer, Jr, B. F. (2004). Benchmark control problems for 

seismically excited nonlinear buildings. Journal of Engineering Mechanics, Vol. 130, No. 4, pp. 366-385. 

17. MATLAB (2010). The math works. Inc. Natick, Massachusetts. 

18. SIMULINK (2010). The math works. Inc. Natick, Massachusetts. 
  


