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Abstract– Endurance Time (ET) method is a recently developed response-history based analysis 
procedure for seismic assessment and structural design in which structures are subjected to a 
predesigned intensifying excitation function, and their performance is evaluated based on their 
response at different excitation levels. Generating efficient excitation functions, which is essential 
for functionality of the method, leads to a complex large-scale optimization problem. In this paper, 
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which has found many 
applications in solving continuous optimization problems, is employed to produce the excitation 
functions. The results reveal the good performance of the algorithm in generating ET excitation 
functions (ETEF) with reasonable accuracy and time efficiency.           
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1. INTRODUCTION 
 

In earthquake engineering, the need for developing advanced and more efficient structural analysis tools 
seems to be neverending. This need is intensified by two major factors. Firstly, the increasing demands for 
building more complex structures due to modern architectural or functional requirements. Secondly, the 
growing tendency in utilizing the progressive seismic mitigation technologies. Various limitations of 
conventional seismic analysis procedures, as well as remarkable advances in the field of computational 
technology, have motivated researchers to develop more reliable and robust methods for optimal seismic 
design of structures [1]. Time-history based procedures are prevalent analytical methods, since in these 
procedures, nearly all sorts of complicated material and geometry can be directly included in the analysis. 
Though the model complexity is not considered as an obstacle (at least theoretically), extensive 
computational demand has prohibited the widespread application of such analyses in practice [2]. 

A comparison of the options and limitations of available analysis procedures implies that nonlinear 
response-history based procedures are the future approaches, despite their complexity and considerable 
computational demand. A response-history based analysis is the only method that makes it possible to 
incorporate nearly all sources of nonlinear and time dependent effects directly in the analysis [1]. 
Endurance Time method is a response-history based procedure that aims to improve on complexity and 
computational demand of this class of analysis tools. 

The concept of the endurance time is quite straightforward and is similar to the well-known exercise 
test in medicine; subjecting the system to an increasing demand and monitoring its response stage-by-
stage. In ET method, structures are subjected to a specially designed intensifying excitation function and 
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their seismic performance is evaluated based on the time duration needed to satisfy the required design 
objective. Maximum drift or displacement, maximum stress ratio or any other desired parameter or 
damage can be selected as the design objectives [1]. During recent years, this basic concept has evolved 
into a working procedure that offers three major benefits: 

 Significant reduction of the computational time required for a realistic estimation of the seismic 
response at multiple intensity levels. 

 Simplicity and sensibility of the concept for engineering applications. 
 Applicability to nearly all types of structures and dynamic systems regardless of their complexity. 
The basic concepts of the method were developed in [3]. After successful production of the second 

generation of ETEFs, its application considering linear behavior was extended by [4]. A preliminary study 
of nonlinear analysis and predicting various damage indexes were published in [5]. Nonlinear analysis of 
SDOF systems considering different material models was performed in [6]. This was followed by analysis 
of MDOFs as described in [7]. The procedure has recently been extended to multi-component analysis [8, 
9]. 

Generating efficient dynamic excitations is essential for success of the ET method. An input function 
is considered to be efficient if the results estimated by an ET analysis are consistent with the response of 
the different structures under real earthquakes. The excitation functions currently applied in ET method 
have two specific properties: (I) these functions are intensifying as their amplitude increases with time, (II) 
these functions are optimized such that the response spectrum of any segment from t = 0 to t = t1 is 
proportional to a template response spectrum with a scale factor that linearly increases with time [2]. 
Generating ETEFs with these properties leads to a complex large-scale optimization problem [10]. This is 
where the heuristic algorithms, which have been successfully applied to solve a wide range of engineering 
problems [11-14], come into the scene. 

The meta-heuristic developed in this paper belongs to a class of Evolution Strategies. In the 

nineteenth century, Mendel was the first to state the preliminary concepts of heredity from parents to 

offsprings [15]. Then in 1859, Darwin presented the theory of evolution in his famous book On the Origin 

of Species [16]. In the 1980s, these theories of creation of new species and their evolution have inspired 

computer scientists in designing Evolutionary Algorithms (EA). Different types of EAs have evolved 

independently during the past 40 years: Genetic Algorithms [17], Evolution Strategies [18], Evolutionary 

Programming [19], and Genetic Programming [20]. Each of these constitutes a different approach; 

however, they are inspired by the same principles of natural evolution. EAs are the most studied 

population-based metaheuristics and this has promoted the field known as Evolutionary Computation [15]. 

The CMA-ES is a stochastic method for continuous optimization of non-linear, non-convex 

problems, which was first introduced by Hansen et al. [21]. In an ES, new candidate solutions are sampled 

according to a multivariate normal distribution. Pair-wise dependencies between the variables in this 

distribution are described by a covariance matrix. The CMA is a method to update the covariance matrix 

of this distribution. The CMA-ES is a second-order optimization approach, where only the ranking 

between candidate solutions is exploited for learning the sample distribution, and neither derivatives nor 

even the objective function values are required by the method. This makes the method feasible on ill-

conditioned and non-continuous, as well as on multimodal or noisy problems [15]. 

After this opening section, the paper is organized as follows: Section 2 explains the concept of ET 

method. In section 3, characteristics of ETEFs and the objective function of the optimization problem are 

presented. Section 4 introduces the CMA-ES.  Production of ETEFs and related discussions are provided 

in section 5 and finally the paper is concluded in section 6. 
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2. CONCEPT OF THE ET METHOD 
 

In order to explain the concept of endurance time, consider a hypothetical test in which the prototypes of 
three design alternatives for a structure are placed on a shaking table and subjected to an intensifying 
excitation until their complete failure. Based on the order that these structures fail, one can comparatively 
categorize them as the worst, average and the best performer. Fig. 1 indicates a numerical presentation of 
what happens in the test. If the variations of appropriate design parameters are monitored, then it can be 
readily seen which design works better and approximately by how far. It should be mentioned that these 
increasing demand curves represent the maximum absolute value of the response from the start up to a 
particular time [1]. 
 

 
Fig. 1. Basic concept of the ET analysis 

 
The concept seems to be simple enough. Now the question is whether it is possible to establish a 

meaningful correlation between the intensity of an intensifying excitation and those of ground motions. It 
turns out that the concept of response spectrum can be used quite effectively in producing intensifying 
excitation functions. The point is that the response spectrum strongly reflects two major characteristics of 
any ground motion, i.e. the intensity and the frequency content. Two dynamic excitations with similar 
response spectrum produce almost similar responses in most structures. Thus, if the response spectrum of 
the ETEFs at a particular time can be generated to match a particular response spectrum corresponding to, 
say the average response spectrum of a set of ground motions, then the produced response at that time can 
be considered as a good estimator of the expected average response of the structure when subjected to 
those ground motions [1].  

 
3. ET EXCITATION FUNCTIONS 

 
As stated in the previous section, the concept of response spectrum can be used effectively in producing 
the excitation functions. A typical code design spectrum can be considered as a good starting point to 
approach this problem. In this way, the problem reduces to generating an intensifying acceleration 
function that produces a response spectrum matching a set of up scaling design spectrums at all times. The 
particular time corresponding to the scale factor of unity is called the target time, Targett . The response 
spectrum produced by the ETEF at all times before the target time should be less, and at all times after the 
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target time should be greater than the considered design spectrum. This means that we assume the overall 
shape of the target spectrum remains the same and target spectrums at various times are scaled versions of 
the same spectrum, which is called the template spectrum hereafter [1]. This requirement is given by:  

)(),(
Target

TS
t

t
tTS aCaC                                                       (1) 

where )(TSaC  is the template spectrum, ),( tTSaC  is the target spectrum to be approached at time t of the 
ETEF, and T is the fundamental period of the structure. This formula simply states that the acceleration 
response produced by the ETEF at a particular time t should remain proportional to the considered 
template spectrum and scale up in a linear manner as a function of time [1].  

Displacement spectrum is also important for characterizing a dynamic excitation. Target 
displacement spectrum can be defined as a function of the template acceleration spectrum considering the 
linear behavior and common simplifications applied in structural dynamics:  
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where ),( tTSuC  is the target displacement spectrum to be approached at time t of the ETEF [1]. 

Now, the next question is whether and how such a record can actually be produced. Obviously, from 

an analytical viewpoint, this is a complex problem that should be tackled. One practical approach to 

handle this problem is through an optimization procedure, the objective function of which can be 

formulated as:  
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where ),( tTSa  and ),( tTSu  are the acceleration and displacement response spectrum, respectively. ga  is 

the excitation function as the optimization variable and α is a weight factor considered equal to unity in 

this research [1]. While the formulation for producing the ETEF by (3) seems to be compact and 

straightforward, in practice its solution has been shown to be highly complicated and computationally 

demanding. As will be shown in section 5, the CMA-ES turns out to be effective in providing good quality 

solutions to this problem. 

Some measures other than the objective function are also required to assess the quality of the ETEFs, 

e.g., the total absolute error, the absolute error of acceleration response spectra and the absolute error of 

displacement response spectra, which are respectively as follows:  
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4. THE CMA-ES 

 
In this section, a brief description of the CMA-ES is presented. For more information about terminology 
and details, interested readers may refer to [22]. A summary of the algorithm together with a table of the 
default strategy parameters and their values are provided in Appendix A.  
 
a) Basic equation: sampling 
 

In the CMA-ES, a population of new search points (individuals, offspring) is generated by sampling a 
multivariate normal distribution. At each generation, the basic equation for sampling is: 

1,...,k         ) ,0(~ )()()()1(  forNσmx gggg
k C                               (7) 

where 
) ,0( )(gN C  is a multivariate normal distribution with zero mean and covariance matrix )(gC , 	

)1( g
kx  nR , k-th offspring from generation g + 1, 

)( gm  nR , mean value of the search distribution at generation g, 
)( gσ  R , overall standard deviation, step-size, at generation g, 
)( gC  nnR  , covariance matrix at generation g, 

λ ≥ 2 , population size, number of offspring. 
To define the complete iteration step, the remaining problem is how to calculate )1( gm , )1( gC and 

)1( gσ  for the next generation g + 1. The next three subsections will deal with these problems. 
 
b) Selection and recombination 
 

The new mean )1( gm  of the search distribution is a weighted average of μ selected points from the 
sample: 




 



1

1)(
:

)1(

i

g
ii

g
  xm                                  (8) 

where 
μ ≤ λ is the parent population size, i.e. the number of selected points. 
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i )-1 will be used in the following and can be paraphrased as variance 
effective selection mass. From the definition of i  in (8), 1 ≤ μeff ≤ μ is derived. 
 
c) Adapting the covariance matrix 
 

The CMA-ES is based on two adaptation principles, which make it an efficient procedure for 
multimodal continuous problems. Firstly, a maximum-likelihood principle, based on the idea to increase 
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the probability of successful candidate solutions and search steps. For this purpose, the algorithm updates 
the covariance matrix of the distribution such that the likelihood of already applied successful steps is 
increased. Rank-μ-update performs this principle [15]. Secondly, an evolution path principle, based on 
memorizing the time evolution path of the distribution mean. These paths contain substantial information 
about the correlation between consecutive steps. The evolution paths are exploited in two ways. One path 
is used for the covariance matrix adaptation procedure and facilitates a possibly much faster variance 
increase of favorable directions. Rank-one-update performs this. The other path is used to conduct an 
additional step-size control that effectively prevents premature convergence yet allows a faster 
convergence (see Section 4.4) [15].  
 
1. Rank-μ-update: Choosing )0(C  to be the unity matrix, the new covariance matrix C (g+1) is given by: 
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where 
0 ≤ c  ≤ 1 is learning rate for updating the covariance matrix. For c  = 1, no prior information is 

retained and for c  = 1, no learning takes place. 
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This covariance matrix update is called rank-μ-update, because the sum of outer products in (9) is of 

rank μ. The number 1/ c  is the backward time horizon, which says approximately 37% of the information 

in C (g+1) is older than the last 1/ c  generations. 
 
2. Rank-one-update: A sequence of successive steps, in which the strategy takes over a number of 

generations is called an evolution path. An evolution path can be expressed by a sum of consecutive steps. 

This summation is referred to as cumulation. The evolution path of the distribution mean is expressed by: 
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where 

)(g
cp ) nR is the evolution path at generation g and )0(

cp  = 0. 

cc , learning rate for updating the evolution path. 

In the final algorithm the relationship (10) is slightly modified, see Appendix A. 

The rank-one-update of the covariance matrix )( gC via the evolution path 1)( g
cp  is defined as:  
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where 

1c  is the learning rate for the rank one update. 

Figure 2 demonstrates the concept behind the covariance matrix adaptation in the CMA-ES 

algorithm. As the generations progress, the algorithm approaches the global optimum while 

simultaneously the distribution shape adapts to an ellipsoidal landscape and the search is directed along an 

evolution path. 
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Fig. 2. Estimation of the search distribution for the second generation. Left: producing the first population by 

sampling of N (0, I). Middle: selection of the new parents and updating the covariance matrix; solid lines 
 determine the selected steps. Right: search distribution of the next generation (dashed ellipsoid).  

Contour lines (grayed) indicate that the strategy should move toward the upper right corner 
 
d) Step-size control 
 

The covariance matrix adaptation, introduced in the last section, does not explicitly control the 
“overall scale” of the distribution. Step-size control defines how much the distribution ellipsoid should be 
elongated or shortened, to achieve an optimal scale. The evolution path is utilized to control the step-size. 
 

 
Fig. 3. Two evolution paths of respectively six steps from various situations. The length of the  

evolution paths is remarkably different and is exploited for step-size control 
 

The length of an evolution path is exploited, based on the following reasoning. Whenever the 
evolution path is short, single steps cancel each other out as is shown in Fig. 3 (left). Hence, they are 
called anti-correlated. If steps annihilate each other, the step-size should be decreased. Whenever the 
evolution path is long, the single steps are pointing to similar directions and they are called correlated, Fig. 
3 (right). Because the steps are similar, the same distance can be covered by fewer but longer steps into 
the same directions. Consequently, the step-size should be increased. 

To decide whether the evolution path is long or short, the length of the path is compared with its 
expected length under random selection, which is equal to the expectation of the Euclidean norm of a N (0, 
I) distributed random vector. If selection biases the evolution path to be longer than expected, σ is 
increased, and vice versa.  

To calculate the step-size, a conjugate evolution path is constructed because the expected length of 
the evolution path pc from (10) depends on its direction. Initialized with )0(

p  = 0, the conjugate evolution 
path is given by:  
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where 
)( g

p nR  is the conjugate evolution path at generation g.  
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cσ, the learning rate. 
T)(1)()(2

1
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
 , this transformation produces the expected length of 1)( g

p  
independent of its direction. 

The step-size update is formulated as:   
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 is damping parameter that scales the change magnitude of )( gσ . 
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search space dimension. 
 

5. GENERATING ET EXCITATION FUNCTIONS VIA THE CMA-ES 
 
The design spectrum of BHRC (Standard No. 2800) for stiff soil (type II) is employed as the template 
spectrum in this study [23]. Time duration of the excitation functions is 20 seconds, which is composed of 
2000 acceleration points in 0.01-second time steps. The target time is selected to be 10th second and that is 
when the response spectrum of a SDOF system with a damping ratio of 5% should match the template 
spectrum having a scale factor of unity and remain proportional to it at all other times. Maximum 
fundamental period of the system is considered to be 5 seconds. The periodic range from 0.0 to 5.0 
seconds is divided into 0.005-second time steps. According to Standard No. 2800, the template spectrum 
for soil type II is expressed by: 
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where I is the importance factor of the structure taken as 1.0 and R is the response reduction factor that is 
not applied (i.e. R = 1.0) [22]. 

A three-member series of ETEFs, labeled as ET-ES series, was produced by exploiting the CMA-ES. 
One record of the series is depicted in Fig. 4 and the acceleration and displacement response spectra of 
this record at 5th, 10th, 15th and 20th seconds are demonstrated in Fig. 5. This is the result of optimizing the 
satisfaction of 2,000,000 equations (response in 1000 periods at 2000 time spots) by 2000 variables.  
 

 
Fig. 4. ET-ES01 excitation function  
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Fig. 5. Acceleration and displacement response spectra of ET-ES01 at 5th, 10th, 15th and 20th seconds 

 
In order to reduce the level of scatter, various alternative schemes can be adopted. One of the 

simplest procedures in this regard is to average the result from several ETEFs in order to reduce the level 

of a scatter around the target [1]. Preliminary studies show that by averaging the results from multiple 

ETEFs, a reasonably accurate estimate of the response can be made [4]. The average response from three 

records of the ET-ES series at the target time is shown in Fig. 6. As can be seen, the average response has 

a better fit with the target spectrum.  

 

    
Fig. 6. Acceleration and displacement response spectra of ET-ES series at the target time (the 10th second). 

 
Table 1. Calculated errors of ET-ES series 

 

 
Absolute acceleration 
response spectra error 

Absolute displacement 
response spectra error 

Total absolute error 

ET-ES01 0.4629 0.0762 0.4691 

ET-ES02 0.4703 0.0710 0.4766 

ET-ES03 0.4787 0.0831 0.4858 

Average 0.4706 0.0768 0.4772 

Ave ET-ES 0.3172 0.0516 0.3214 
 

Measure of the absolute acceleration and displacement response spectra errors and the total absolute 
error of the ET-ES series are provided in Table. 1. As can be seen, the average of total absolute error of 
the series is 0.4772, whereas the error of average response of the series is 0.3214. Thus, by averaging the 
results of the three records, the amount of deviation is reduced about 33 percent. 

For a more precise performance assessment, the calculated errors of the best available ETEF, 
generated on the same template spectrum with the ET-ES series, are provided in Table 2. ETA20a01, 
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ETA20a02 and ETA20a03 form a series of ETEFs that are the result of a mathematical programming 
approach, applies a classical unconstrained optimization procedure [2]. It is interesting to note that the 
error of the average response of the ETA20a series is still about 19 percent less than that of the ET-ES 
series. Nevertheless, quality is not the only concern in production of ETEFs, but the time efficiency is also 
important. The optimization time of ET-ES series is about one third of the time spent for the ETA20a 
series. This reduction is noticeable due to heavy computational time cost in the generation of ETEFs. The 
CPU-time consumption of the program, coded in MATLAB®, for generating each record of the ET-ES 
series was roughly 45 hours, which is obtained using an Intel® Core™ i7 @ 2.0 GHz processor equipped 
with 8 GBs of RAM. This means, by employing the CMA-ES for production of ETEFs rather than the 
classical unconstrained optimization procedure, a significant improvement in computational effort can be 
achieved, accompanied by a slight loss of accuracy. Data of both series are available online [20]. 
 

Table 2. Calculated errors of ET-ES and ETA20a series 
 

Total absolute error 

ET-ES01 0.4691 ETA20a01 0.4343 

ET-ES02 0.4766 ETA20a02 0.4539 

ET-ES03 0.4858 ETA20a03 0.4305 

Average 0.4772 Average 0.4396 

Ave ET-ES 0.3214 Ave ETA20a 0.2618 

 
6. CONCLUDING REMARKS 

 
In this paper, the CMA-ES is implemented to produce the intensifying excitation functions of the 
Endurance Time method. A series of ETEFs, labeled as ET-ES series, is produced for a design spectrum 
of BHRC code. The calculated errors of the ET-ES series confirm that the proposed procedure can be 
applied efficiently in the production of ETEFs with reasonable accuracy.  

It is not clear how much better ETEFs could be generated using advanced optimization procedures. 
However, it seems that even with the current level of fitness, the produced ETEFs can be successfully put 
into practical use. Production of improved ETEFs that produce more precise estimates of seismic response 
remains an open topic.  

Besides quality considerations in production of ETEFs, reducing the optimization time is also 
essential. Production of ETEFs, considering the high volume of computations, is an extremely time-
consuming process. Therefore, developing more efficient optimization procedures is necessary to make 
the process practically appealing.  

The CMA-ES does not require a tedious parameter tuning for its application. In fact, the choice of 
strategy parameters is not left to the user. Finding good strategy parameters is considered as a part of the 
algorithm design, and not part of its application. For the application of the CMA-ES, just an initial 
solution, an initial standard deviation (step-size) and, possibly, the termination criteria need to be set by 
the user. This makes the CMA-ES a user-friendly optimization method.  
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APPENDIX A. SUMMARY OF THE CMA-ES ALGORITHM 

Set parameters 

Set parameters λ, μ,  ,...,1i , c , 1c , cc , c and d to their default values according to Table 7. 
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Table 3. Default strategy parameters 
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