http://ijsts.shirazu.ac.ir

OD-Characterization of some orthogonal groups

N. Ahanjideh, G. R. Rezaeezadeh* and Sh. Safari

Department of Mathematics, Faculty of Basic Sciences University of Shahre-kord, P.O. Box: 115, Shahre-kord, Iran E-mail: rezaeezadeh@sci.sku.ac.ir

Abstract

In this paper, it was shown that ${}^{2}D_{n}(2)$, where $n = 2^{m} + 1 \ge 5$ and $|\pi(2^{n-1} + 1)| = 1$, and ${}^{2}D_{n}(3)$, where $n = 2^{m} + 1 \ge 9$ is not prime and $|\pi(\frac{3^{n-1}+1}{2})| = 1$, are OD-characterizable.

Keywords: Simple groups; prime graph; degree of a vertex; degree pattern

1. Introduction

Let **G** be a finite group, $\pi(\mathbf{G})$ the set of all prime divisors of its order and let $\omega(G)$ be the spectrum of **G**, that is the set of its element orders. The prime graph **GK(G)** of **G** is a simple graph with vertex set $\pi(G)$ in which two distinct vertices **p** and **q** are joined by an edge (and written $\mathbf{p} \sim \mathbf{q}$) if and only if $pq \in \omega(G)$. Denote by t(G) the number of connected components of GK(G). The *i*-th connected component is denoted by $\pi_i = \pi_i(G)$ for each i. If $2 \in \pi(G)$, then we assume that $2 \in \pi_1$. For $\mathbf{p} \in \pi(\mathbf{G})$, $\operatorname{deg}(\mathbf{p}) = |\{\mathbf{q} \in \pi(\mathbf{G}) | \mathbf{p} \sim \mathbf{q}\}|$ is called the degree of **p**. If $\pi(\mathbf{G}) = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k\}$ with $\mathbf{p}_1 < \mathbf{p}_2 < \ldots < \mathbf{p}_k$, we also define $\mathbf{D}(\mathbf{G}) =$ $(deg(p_1), deg(p_2), \dots, deg(p_k))$ which is called the degree pattern of G. It is clear that the order of **G** can be expressed as the product of the numbers $m_1, m_2, ..., m_{t(G)}, \text{ where } \pi(m_i) = \pi_i, 1 \le i \le 1$ t(G). If the order of G is even and $t(G) \ge 2$, according to our notation $\mathbf{m}_2, \mathbf{m}_3, \dots, \mathbf{m}_{t(G)}$ are odd numbers. The positive integers $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_{t(G)}$ are called the order components of **G** and OC(G) = $\{\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_{t(G)}\}$ is called the set of order components of G, and $T(G) = {\pi_i(G) | i =$ $1, 2, \ldots, t(G)$ is called the set of connected components of G. set $\Omega_0(G) = \{p \in \pi(G) | deg(p) = 0\}$ and $\Omega_{0'}(G) =$ $\{\mathbf{p} \in \pi(\mathbf{G}) | \mathbf{deg}(\mathbf{p}) \neq \mathbf{0}\}.$ Clearly, $\pi(\mathbf{G}) =$ $\Omega_0(\mathbf{G}) \cup \Omega_{0'}(\mathbf{G})$. Given a finite group **M**, denote by $h_{0D}(M)$ the number of isomorphism classes of finite groups **G** such that $|\mathbf{G}| = |\mathbf{M}|$ and $\mathbf{D}(\mathbf{G}) =$ D(M). A finite group M is called k-fold ODcharacterizable if $h_{0D}(M) = k$. Usually a 1-fold

*Corresponding author Received: 19 December 2012 / Accepted: 6 March 2013 OD-characterizable group is simply called ODcharacterizable [1]. Also in [1], Darafsheh et.al proved that the sporadic simple groups, alternating groups A_p , where **p** and **p** – **2** are primes, and some simple groups of Lie type are ODcharacterizable, and $S_6(3)$ and $O_7(3)$ are **2**-fold OD-characterizable groups. In [2], it has been proved that A_{10} is **2**-fold OD-characterizable. In [3], it has been proved that all simple groups whose orders are less than 10^8 except A_{10} and $U_4(2)$ are OD-characterizable. According to [4], $B_r(3)$ and $C_r(3)$, where **r** is an odd prime and $|\pi(\frac{3^r-1}{2})| = 1$ and $B_n(q), C_n(q)$, for certain **n**, **q**, and the simple groups **B**₃(5) and **C**₃(5) are **2**-fold ODcharacterizable. In this paper, we prove that:

Theorem A. Let G be a finite group such that $|G| = |{}^2D_n(2)|$ and $D(G) = D({}^2D_n(2))$, where $n = 2^m + 1 \ge 5$ and $|\pi(2^{n-1} + 1)| = 1$. Then $G \cong {}^2D_n(2)$.

Theorem B. Let **G** be a finite group such that $|\mathbf{G}| = |^2 \mathbf{D}_n(3)|$ and $\mathbf{D}(\mathbf{G}) = \mathbf{D}(^2 \mathbf{D}_n(3))$, where $\mathbf{n} = 2^m + 1 \ge 9$ is not prime and $|\pi(\frac{3^{n-1}+1}{2})| = 1$. Then $\mathbf{G} \cong^2 \mathbf{D}_n(3)$.

2. Preliminary results

If **a** is a natural number, **r** is an odd prime and $(\mathbf{r}, \mathbf{a}) = \mathbf{1}$, then by $\mathbf{e}(\mathbf{r}, \mathbf{a})$ we denote the smallest natural number **n** with $\mathbf{a}^n \equiv \mathbf{1}(\mathbf{mod r})$. A prime **r** with $\mathbf{e}(\mathbf{r}, \mathbf{a}) = \mathbf{n}$ is called a primitive prime divisor of $\mathbf{a}^n - \mathbf{1}$. We denote by $\mathbf{R}_n(\mathbf{a})$ the set of all the primitive prime divisors of $\mathbf{a}^n - \mathbf{1}$ and by $\mathbf{r}_n(\mathbf{a})$ every element of $\mathbf{R}_n(\mathbf{a})$, and \mathbf{n}_n is **p**-part of **n**.

Lemma 2.1. (Zsigmondy 's Theorem)[5]Let **a** and **n** be integers greater than 1. There exists a prime divisor **p** of $a^n - 1$ such that **p** does not divide $a^j - 1$ for all $1 \le j < n$, except exactly in the following cases:

(i)
$$n = 2$$
, $a = 2^{s} - 1$, where $s \ge 2$;

(ii)
$$n = 6, a = 2$$
.

By Zsigmondy's Theorem, $\mathbf{R}_{n}(\mathbf{a}) \neq \mathbf{\phi}$, unless $\mathbf{a} = 2, \mathbf{n} = \mathbf{6}$ or $\mathbf{n} = 2$ and

 $\mathbf{a} = \mathbf{2^w} - \mathbf{1}$ for some natural number **w**. Obviously by Fermat's little theorem it follows that $\mathbf{e}(\mathbf{r}, \mathbf{a}) | \mathbf{r} - \mathbf{1}$. Also, if $\mathbf{a}^m \equiv \mathbf{1} \pmod{\mathbf{r}}$, then $\mathbf{e}(\mathbf{r}, \mathbf{a}) | \mathbf{m}$. Also, for an integer **n**, by $\eta(\mathbf{n})$ we denote the following function:

$$\eta(\mathbf{n}) = \begin{cases} \mathbf{n} & \mathbf{n} \text{ is odd} \\ \frac{\mathbf{n}}{2} & \text{otherwise} \end{cases}$$

Lemma 2.2. [6, 7] Let $\mathbf{G} = {}^{2} \mathbf{D}_{n}(\mathbf{q})$ be a finite simple group of Lie type over a field of characteristic **p**. Let **r** and **s** be odd primes and **r**, $\mathbf{s} \in \pi(\mathbf{G}) \setminus \{\mathbf{p}\}$. Put $\mathbf{k} = \mathbf{e}(\mathbf{r}, \mathbf{q})$ and $\mathbf{l} = \mathbf{e}(\mathbf{s}, \mathbf{q})$. Then:

(i) r and p are non-adjacent if and only if $\eta(e(r,q)) > n-2$;

(ii) if $1 \le \eta(k) \le \eta(l)$, then **r** and **s** are nonadjacent if and only if $2\eta(k) + 2\eta(l) > 2n - (1 + (-1)^{k+l})$ and $\frac{l}{k}$ is not an odd natural number; (iii) if $p \ne 2$, then **r** and **2** are non-adjacent if and only if one of the following holds:

1. $\eta(\mathbf{k}) = \mathbf{n}$ and $(4, q^n + 1) = (q^n + 1)_2$; 2. $\eta(\mathbf{k}) = \frac{\mathbf{k}}{2} = \mathbf{n} - 1$, **n** is odd and $\mathbf{e}(2, q) = 2$.

Proof: First assume that $\mathbf{p} = 2$ and $\mathbf{s} \in \pi(\mathbf{G}) \setminus \{2\}$. Then by Table 2, we have $\pi_2(\mathbf{M}) = \pi(2^{n-1} + 1)$ and by Lemma 2.2(i), \mathbf{s} is non-adjacent to 2 if and only if $\mathbf{s} \in \mathbf{R}_{2n}(2) \cup \mathbf{R}_{2(n-1)}(2)$. But since $\mathbf{R}_{2(n-1)}(2) \subseteq \pi(2^{n-1} + 1)$, we have $|\mathbf{R}_{2(n-1)}(2)| = 1$. Therefore $deg(2) = |\pi(\mathbf{M})| - (2 + |\mathbf{R}_{2n}(2)|)$. For $\mathbf{p} = 3$, the same argument shows that $deg(3) = |\pi(\mathbf{M})| - (2 + |\mathbf{R}_{2n}(3)|)$.

Lemma 2.4. [8] Let G be either a Frobenius group or a **2**-Frobenius group of even order. Then t(G) = 2.

Lemma 2.5. [1] Let *G* and *M* be finite groups such that |G| = |M| and D(G) = D(M). In addition, we suppose one of the following conditions holds: (i) $|\Omega_{o'}(M)| = 0$; (ii) $|\Omega_{o'}(M)| = 2$; (iii) $|\Omega_{o'}(M)| \ge 3$ and there exists a vertex $p \in \pi(M)$ such that $deg(p) \ge |\Omega_{o'}(M)| - 2$. Then OC(G) = OC(M).

Lemma 2.6. [8, 9] Let *G* be a finite group with $t(G) \ge 2$. Then one of the following holds: (i) *G* is a Frobenius or a 2-Frobenius group; (ii) *G* has a normal series $1 \le H > K \le G$ such that *H* and $\frac{G}{K}$ are π_1 -groups and $\frac{K}{H}$ is a non-abelian finite

simple group. Moreover, H is nilpotent, $|\frac{G}{K}|$ divides $|Out(\frac{K}{H})|$ and every odd order component of G is an odd order component of $\frac{K}{H}$.

Lemma 2.7. [10] Let p and q be primes and m, n > 1. Then:

(i) the only solution of the diophantine equation $p^m - q^n = 1$ is $(p^m, q^n) = (3^2, 2^3)$;

(ii) with the exceptions of the relations $(239)^2 - 2(13)^4 = -1$ and $3^5 - 2 \cdot 11^2 = 1$ every solution of $p^m - 2q^n = \pm 1$ has exponents of m = n = 2, i.e. it comes from a unit $p - q \cdot 2^{\frac{1}{2}}$ of the quadratic field $O(2^{\frac{1}{2}})$.

Lemma 2.8. [11] Let G be a finite group with $t(G) \ge 2$. If $H \trianglelefteq G$ is a π_i -group, then $(\prod_{1 \le j \ne i \le t(G)} m_j)$ divides |H| - 1.

Lemma 2.9. [12] Let $G = A_l(q)$ be a finite simple group of Lie type over a field of characteristic p, where $q = p^k$. Then:

(i) if l = 1, then |Out(G)| = gcd(2, q - 1)k; (ii) if $l \ge 2$, then |Out(G)| = 2gcd(l + 1, q - 1)k.

The list of finite simple groups with disconnected prime graph and their odd order components is given in Table 1-3 [9, 13].

Р	Restrictions on P	$\pi_1(P)$	m_2	m_3	m_4	m_5	m_6
$A_{2}(4)$		{2 }	3	5	7		
${}^{2}B_{2}(q)$	$q = 2^{2m+1} > 2$	{2 }	q-1	$q - \sqrt{2q} + 1$	$q + \sqrt{2q} + 1$		
${}^{2}E_{6}(2)$		{2, 3, 5, 7, 11}	13	17	19		
$E_8(q)$	$m{q}\equiv 2$, $m{3}(5)$	$\pi(q(q^8-1)(q^{12}-1)$	$q^{10} + q^5 + 1$	$q^8 - q^4 + 1$	$q^{10} - q^5 + 1$		
		$(q^{14}-1)(q^{18}-1)(q^{20}-1))$	$q^2 + q + 1$		$q^2 - q + 1$		
M ₂₂		{2, 3}	5	7	11		
J_1		{2, 3, 5 }	7	11	19		
O 'N		{2, 3, 5, 7}	11	19	31		
LyS		{2, 3, 5, 7, 11}	31	37	67		
<i>Fi</i> ′ ₂₄		{2, 3, 5, 7, 11, 13}	17	23	29		
F ₁		$\{2, 3, 5, 7, 11, 13, 17, 19, 23, 2\}$	41	59	71		
$E_8(q)$	$m{q}\equivm{0},m{1},m{4}(m{5})$	$\pi(q(q^8-1)(q^{10}-1)$	$q^{10} + q^5 + 1$	$q^{10} - q^5 + 1$	$q^{8}-q^{4}+1$	$q^{10} + 1$	
		$(q^{12}-1)(q^{14}-1)(q^{18}-1))$	$q^2 + q + 1$	$q^2 - q + 1$		$q^2 + 1$	
J_4		$\{2, 3, 5, 7, 11\}$	23	29	31	37	43

Table 1. Finite Simple Groups P with t(P) > 3

Table 2.	Finite	Simple	Groups	Р	with	t (P)	= 2
I dole I	1 mile	Simple	Groups	-	** 1011	•	_

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	Restrictions on P	$\pi_1(P)$	m_2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A_n	6 < n = p, p + 1, p + 2	$\pi((n-3)!)$	p
$\begin{array}{lll} A_{p-1}(q) & (p,q) \neq (3,2), (3,4) \\ A_{p}(q) & (q-1) (p+1) \\ & \lambda_{p}(q) & (q-1) (p+1) \\ & \lambda_{p}(q) & (q-1) (p+1) \\ & \pi(q(q^{p+1}-1)\prod_{i=1}^{p-1}(q^{i}-1)) & \frac{q^{p}-1}{q-1} \\ & \pi(q(q^{p+1}-1)\prod_{i=1}^{p-1}(q^{i}-(-1)^{i})) & \frac{q^{p}+1}{q+1} \\ & \lambda_{p}(q) & (q+1) (p+1) \\ & (p,q) \neq (3,3), (5,2) & \pi(q(q^{p+1}-1)\prod_{i=1}^{p-1}(q^{i}-(-1)^{i})) & \frac{q^{p}+1}{q+1} \\ & \lambda_{q}(q) & n=2^{m} \geq 4, q \text{ is odd} \\ & \lambda_{q}(q) & n=2^{m} \geq 4, q \text{ is odd} \\ & \mu(q) \prod_{i=1}^{n-1}(q^{2i}-1)) & \frac{q^{n}+1}{2} \\ & \lambda_{p}(q) & n=2^{m} \geq 2 \\ & \pi(3(3^{p}+1)\prod_{i=1}^{p-1}(3^{2i}-1)) & \frac{q^{n}+1}{2} \\ & \lambda_{p}(q) & n=2^{m} \geq 2 \\ & \lambda_{q}(q) & n=2^{m} \geq 4 \\ & \lambda_{q}(q) & n=2^{m} + 1, m \geq 2 \\ & \lambda_{q}(2(2^{n}+1))\prod_{i=1}^{n-2}(2^{2i}-1)) \\ & \lambda_{q}(2^{n}-1) & \lambda_{q}(2^{n}-1) \\ & \lambda_{q}(2^{n}-1) & \lambda_{q}(2^{n}-1$		n or n - 2 is not prime		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{p-1}(q)$	$(p,q) \neq (3,2), (3,4)$	\prod^{p-1}	q^p-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P		$\pi(q \mid q \mid q^{r} - 1))$	$\overline{(a-1)(n \ a-1)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{n}(\boldsymbol{a})$	(a-1) (n+1)	i - 1	$a^p - 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$p(\mathbf{q})$	$(\mathbf{q} - \mathbf{p})(\mathbf{p} + \mathbf{r})$	$\pi(q(q^{p+1}-1) \mid (q^i-1))$	$\frac{1}{a}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 (2)		$\prod_{i=1}^{n-1} p_{-1}$	q = 1 $a^p \perp 1$
$ \begin{array}{c} 2A_{p}(q) & (q+1) (p+1) \\ (p,q) \neq (3,3), (5,2) \end{array} \pi(q(q^{p+1}-1) \prod_{i=1}^{p-1} (q^{i}-(-1)^{i})) & \frac{q^{p}+1}{q+1} \\ 2A_{3}(2) \\ B_{n}(q) & n = 2^{m} \geq 4, q \text{ is odd} \end{aligned} \begin{cases} \{2,3\} & 5 \\ \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}+1}{2} \\ \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}+1}{2} \\ \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}+1}{2} \\ \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}-1}{2} \\ C_{n}(q) & n = 2^{m} \geq 2 \\ \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{p}-1}{(2,q-1)} \\ C_{p}(q) & q = 2,3 \\ D_{p}(q) & p \geq 5, q = 2,3,5 \\ D_{p+1}(q) & q = 2,3 \\ P_{n}(q) & n = 2^{m} \geq 4 \\ P_{n}(q) & n = 2^{m} \geq 4 \\ P_{n}(q) & n = 2^{m} \geq 4 \\ P_{n}(2) & n = 2^{m}+1, m \geq 2 \\ P_{n}(3) & 5 \leq p \neq 2^{m}+1 \\ P_{n}(3) & n = 2^{m}+1 \neq p, m \geq 2 \\ P_{n}(3) & n = 2^{m}+1 \neq p, m \geq 2 \\ \end{array} $	$-A_{p-1}(q)$)	$\pi(a \mid a^{i} - (-1)^{i}))$	$\frac{q^{i}+1}{1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		$I_{i=1}$	(q+1)(p,q+1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}A_{p}(q)$	(q + 1) (p + 1)	$\pi(a(a^{p+1}-1)\prod^{p-1}(a^i-(-1)^i))$	$\frac{q^p+1}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(p,q) \neq (3,3), (5,2)$	$(q - 1) \prod_{i=1}^{n} (q - 1) \prod_{i=1}^{n} (q - 1) $	q+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}A_{3}(2)$		{2,3}	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_n(q)$	$n=2^m\geq 4, q$ is odd	\prod^{n-1}	$q^n + 1$
$B_{p}(3) \qquad \pi(3(3^{p}+1)\prod_{i=1}^{p-1}(3^{2i}-1)) \qquad \frac{3^{p}-1}{2} \\ \pi(q(\prod_{i=1}^{n-1}(q^{2i}-1))) \qquad \frac{q^{n}+1}{(2,q-1)} \\ C_{p}(q) \qquad q=2,3 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{q^{p}-1}{(2,q-1)} \\ D_{p}(q) \qquad p\geq 5, q=2,3,5 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{q^{p}-1}{(2,q-1)} \\ D_{p+1}(q) \qquad q=2,3 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{q^{p}-1}{(2,q-1)} \\ ^{2}D_{n}(q) \qquad n=2^{m}\geq 4 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{n-1}(q^{2i}-1)) \qquad \frac{q^{n}+1}{(2,q+1)} \\ ^{2}D_{n}(2) \qquad n=2^{m}+1, m\geq 2 \qquad \pi(2(2^{n}+1)\prod_{i=1}^{n-2}(2^{2i}-1)) \qquad \frac{3^{p}+1}{4} \\ ^{2}D_{n}(3) \qquad n=2^{m}+1\neq p, m\geq 2 \qquad \pi(3(3^{n}+1)\prod_{i=1}^{n-2}(3^{2i}-1)) \qquad \frac{3^{n-1}+1}{2} \\ \end{array}$			$\pi(q \mid q^{2i}-1))$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_{\rm s}(3)$		$ \sum_{i=1}^{n} p^{-1} $	$3^{p} - 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_p(0)$		$\pi(3(3^p+1) \mid (3^{2i}-1))$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{f}(\mathbf{a})$	$m - 2^m > 2$	$1 I_{i=1}$	$a^n \perp 1$
$C_{p}(q) \qquad q = 2,3 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{(2,q-1)}{(2,q-1)} \\ D_{p}(q) \qquad p \ge 5, q = 2,3,5 \qquad \pi(q\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{q^{p}-1}{(2,q-1)} \\ D_{p+1}(q) \qquad q = 2,3 \qquad \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) \qquad \frac{q^{p}-1}{(2,q-1)} \\ ^{2}D_{n}(q) \qquad n = 2^{m} \ge 4 \qquad \pi(q\prod_{i=1}^{n-1}(q^{2i}-1)) \qquad \frac{q^{n}+1}{(2,q+1)} \\ ^{2}D_{n}(2) \qquad n = 2^{m}+1, m \ge 2 \qquad \pi(2(2^{n}+1)\prod_{i=1}^{n-2}(2^{2i}-1)) \qquad \frac{q^{n}+1}{(2,q+1)} \\ ^{2}D_{p}(3) \qquad 5 \le p \ne 2^{m}+1 \qquad \pi(3\prod_{i=1}^{p-1}(3^{2i}-1)) \qquad \frac{3^{p}+1}{4} \\ ^{2}D_{n}(3) \qquad n = 2^{m}+1 \ne p, m \ge 2 \qquad \pi(3(3^{n}+1)\prod_{i=1}^{n-2}(3^{2i}-1)) \qquad \frac{3^{n-1}+1}{2} \\ \end{array}$	$\mathbf{C}_n(\mathbf{q})$	$n = 2^{n} \ge 2$	$\pi(q \mid (q^{2i}-1))$	$\frac{q+1}{2}$
$\begin{array}{cccc} C_{p}(q) & q=2,3 \\ D_{p}(q) & p\geq 5, q=2,3,5 \\ D_{p}(q) & p\geq 5, q=2,3,5 \\ D_{p+1}(q) & q=2,3 \\ ^{2}D_{n}(q) & n=2^{m}\geq 4 \\ ^{2}D_{n}(2) & n=2^{m}+1, m\geq 2 \\ ^{2}D_{p}(3) & 5\leq p\neq 2^{m}+1 \\ ^{2}D_{n}(3) & n=2^{m}+1\neq p, m\geq 2 \end{array} \begin{array}{ccc} \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) & \frac{q^{p}-1}{q-1} \\ \pi(q(q^{p}+1)\prod_{i=1}^{p-1}(q^{2i}-1)) & \frac{q^{p}-1}{(2,q-1)} \\ \pi(q(2^{2i}-1)) & \frac{q^{n}+1}{(2,q+1)} \\ \pi(3\prod_{i=1}^{n-2}(2^{2i}-1)) & \frac{3^{p}+1}{4} \\ \pi(3(3^{n}+1)\prod_{i=1}^{n-2}(3^{2i}-1)) & \frac{3^{n-1}+1}{2} \end{array}$	~ ()		$I_{i=1}$	(2, q-1)
$ \begin{array}{cccc} m(q(q^{-1}+1))\prod_{i=1}^{p-1}(q^{-1}-1)) & (2,q-1) \\ m(q) & p \ge 5, q = 2,3,5 \\ D_{p+1}(q) & q = 2,3 \\ ^{2}D_{n}(q) & n = 2^{m} \ge 4 \\ ^{2}D_{n}(2) & n = 2^{m}+1, m \ge 2 \\ ^{2}D_{p}(3) & 5 \le p \ne 2^{m}+1 \\ ^{2}D_{n}(3) & n = 2^{m}+1 \ne p, m \ge 2 \\ \end{array} \begin{array}{c} m(q(q^{p}+1))\prod_{i=1}^{p-1}(q^{2i}-1)) & \frac{q^{p}-1}{(2,q-1)} \\ \pi(q(q^{p}+1))\prod_{i=1}^{n-1}(q^{2i}-1)) & \frac{q^{n}+1}{(2,q+1)} \\ \pi(2(2^{n}+1))\prod_{i=1}^{n-2}(2^{2i}-1)) & \frac{q^{n}+1}{4} \\ \pi(3)\prod_{i=1}^{p-1}(3^{2i}-1)) & \frac{3^{p}+1}{4} \\ \pi(3(3^{n}+1))\prod_{i=1}^{n-2}(3^{2i}-1)) & \frac{3^{n-1}+1}{2} \end{array} $	$C_p(q)$	q = 2, 3	$\pi(a(a^p+1)\prod^{p-1}(a^{2i}-1))$	$q^{\nu}-1$
$ \begin{array}{ll} D_p(q) & p \ge 5, q = 2, 3, 5 \\ D_{p+1}(q) & q = 2, 3 \\ & p_{p+1}(q) & q = 2, 3 \\ & p_{p+1}(q) & n = 2^m \ge 4 \\ & p_{p+1}(q) & n = 2^m \ge 4 \\ & p_{p}(q) & n = 2^m \ge 4 \\ & p_{p}(q) & n = 2^m + 1, m \ge 2 \\ & p_{p}(3) & 5 \le p \ne 2^m + 1 \\ & 2D_p(3) & n = 2^m + 1 \ne p, m \ge 2 \\ & p_{p}(3) & p_{p}($			$\prod_{i=1}^{n} (q(q_i + 1)) \prod_{i=1}^{n} (q_i + 1))$	(2, q - 1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_p(q)$	$p\geq 5,q=2$, 3, 5	$-(a \prod^{p-1} (a^{2i}, 1))$	q^p-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\pi(q \prod_{i=1}^{n} (q^{-i} - 1))$	$\overline{q-1}$
$ \begin{array}{cccc} \pi(q) & n = 2^{m} \ge 4 \\ ^{2}D_{n}(q) & n = 2^{m} \ge 4 \\ ^{2}D_{n}(2) & n = 2^{m} + 1, m \ge 2 \\ ^{2}D_{p}(3) & 5 \le p \ne 2^{m} + 1 \\ ^{2}D_{n}(3) & n = 2^{m} + 1 \ne p, m \ge 2 \\ \end{array} \begin{array}{c} \pi(q(q^{p}+1)) \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}+1}{(2,q+1)} \\ \pi(2(2^{n}+1)) \prod_{i=1}^{n-2} (2^{2i}-1)) & 2^{n-1}+1 \\ \pi(3 \prod_{i=1}^{p-1} (3^{2i}-1)) & \frac{3^{p}+1}{4} \\ \pi(3(3^{n}+1)) \prod_{i=1}^{n-2} (3^{2i}-1)) & \frac{3^{n-1}+1}{2} \end{array} $	$D_{n+1}(q)$	a = 2.3	$\prod^{p-1} p^{-1} $	$\dot{q^p} - 1$
$ \begin{array}{cccc} {}^{2}D_{n}(q) & n=2^{m} \geq 4 & \pi(q \prod_{i=1}^{n-1} (q^{2i}-1)) & \frac{q^{n}+1}{(2,q+1)} \\ {}^{2}D_{n}(2) & n=2^{m}+1, m \geq 2 & \pi(2(2^{n}+1) \prod_{i=1}^{n-2} (2^{2i}-1)) & 2^{n-1}+1 \\ {}^{2}D_{p}(3) & 5 \leq p \neq 2^{m}+1 & \pi(3 \prod_{i=1}^{p-1} (3^{2i}-1)) & \frac{3^{p}+1}{4} \\ {}^{2}D_{n}(3) & n=2^{m}+1 \neq p, m \geq 2 & \pi(3(3^{n}+1) \prod_{i=1}^{n-2} (3^{2i}-1)) & \frac{3^{n-1}+1}{2} \end{array} $	p+1 < i		$\pi(q(q^p+1) \mid (q^{2l}-1))$	$\frac{1}{(2 a - 1)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}D(a)$	$n = 2^m > 4$	$\frac{1}{1-1}n-1$	$a^{n} + 1$
${}^{2}D_{n}(2) n = 2^{m} + 1, m \ge 2 \qquad \pi(2(2^{n} + 1) \prod_{i=1}^{n-2} (2^{2i} - 1)) \qquad (2, q + 1) = 1 \\ {}^{2}D_{p}(3) 5 \le p \ne 2^{m} + 1 \qquad \pi(3 \prod_{i=1}^{p-1} (3^{2i} - 1)) \qquad \frac{3^{p} + 1}{4} \\ {}^{2}D_{n}(3) n = 2^{m} + 1 \ne p, m \ge 2 \qquad \pi(3(3^{n} + 1) \prod_{i=1}^{n-2} (3^{2i} - 1)) \qquad \frac{3^{n-1} + 1}{2} $	$\boldsymbol{D}_n(\boldsymbol{q})$	$n-2 \ge 1$	$\pi(q \mid q^{2i}-1))$	$\frac{q+2}{(2+1)}$
	2 0 (2)	$2^m + 1 \rightarrow 2$		(2, q + 1)
${}^{2}D_{p}(3) \qquad 5 \le p \ne 2^{m} + 1 \qquad \qquad \pi(3 \prod_{i=1}^{p-1} (3^{2i} - 1)) \qquad \qquad \frac{3^{p} + 1}{4}$ ${}^{2}D_{n}(3) \ n = 2^{m} + 1 \ne p, m \ge 2 \qquad \qquad \pi(3(3^{n} + 1) \prod_{i=1}^{n-2} (3^{2i} - 1)) \qquad \qquad \frac{3^{n-1} + 1}{2}$	$D_n(2)$	$n = 2^m + 1, m \geq 2$	$\pi(2(2^n+1))$ $(2^{2i}-1))$	$2^{n-1} + 1$
${}^{2}D_{p}(3) \qquad 5 \le p \ne 2^{m} + 1 \qquad \qquad \pi(3 \prod_{i=1}^{p-1} (3^{2i} - 1)) \qquad \qquad \frac{3^{p} + 1}{4}$ ${}^{2}D_{n}(3) \ n = 2^{m} + 1 \ne p, m \ge 2 \qquad \qquad \pi(3(3^{n} + 1) \prod_{i=1}^{n-2} (3^{2i} - 1)) \qquad \qquad \frac{3^{n-1} + 1}{2}$			$I_{i=1}$	07.4
${}^{2}D_{n}(3) \ n = 2^{m} + 1 \neq p, m \ge 2 \qquad \frac{\pi(3 \prod_{i=1}^{n} (3^{-1}))}{\pi(3(3^{n} + 1) \prod_{i=1}^{n-2} (3^{2i} - 1))} \qquad \frac{4}{2}$	$^{2}D_{p}(3)$	$5 \leq p eq 2^m + 1$	$\pi(3 \prod^{p-1} (3^{2i} - 1))$	$3^{p} + 1$
² $D_n(3)$ $n = 2^m + 1 \neq p, m \ge 2$ $\pi(3(3^n + 1) \prod_{i=1}^{n-2} (3^{2i} - 1))$ $\frac{3^{n-1} + 1}{2}$			$\prod_{i=1}^{n} (\mathbf{S} \mathbf{I})$	4
$\pi(3(3^{-1}+1)) \prod_{i=1}^{n} (3^{-1}-1)) = 2$	${}^{2}D_{n}(3)$	$n=2^m+1 eq p,m\geq 2$	$-(2(2n+1)\prod^{n-2}(2^{2i}+1))$	$3^{n-1} + 1$
			$\pi(3(3^{-1}+1)) \prod_{i=1}^{n} (3^{-i}-1))$	2
$G_2(q) 2 < q \equiv \varepsilon(3), \varepsilon = \pm 1 \qquad \pi(q(q^2 - 1)(q^3 - \varepsilon)) \qquad q^2 - \varepsilon q + 1$	$G_2(q)$	$2 < q \equiv arepsilon(3), arepsilon = \pm 1$	$\pi(q(q^2-1)(q^3-\varepsilon))$	$q^2 - \overline{\varepsilon} q + 1$

${}^{3}D_{4}(q)$		$\pi(q(q^6-1))$	$q^4 - q^2 + 1$
$F_4(q)$	\boldsymbol{q} is odd	$\pi(q(q^6-1)(q^8-1))$	$q^4 - q^2 + 1$
${}^{2}F'_{4}(2)$		{2, 3, 5}	13
$E_6(q)$		$\pi(q(q^5-1)(q^8-1)(q^{12}-1))$	$q^{6} + q^{3} + 1$
_			(3, q - 1)
${}^{2}E_{6}(q)$	q>2	$\pi(q(q^5+1)(q^8-1)(q^{12}-1))$	$q^{6}-q^{3}+1$
			(3, q + 1)
<i>M</i> ₁₂		{2, 3, 5}	11
J_2		{2, 3, 5}	7
Ru		{2, 3, 5, 7, 13}	29
Не		{2, 3, 5, 7}	17
McL		$\{2, 3, 5, 7\}$	11
<i>Co</i> ₁		{2, 3, 5, 7, 11, 13}	23
Co_3		{2, 3, 5, 7, 11}	23
Fi ₂₂		{2, 3, 5, 7, 11}	13
F.		{2, 3, 5, 7, 11}	19

Table 3. Finite Simple Groups P with t(P) = 3

Р	Restrictions on P	$\pi_1(P)$	m_2	m_3
A_n	n > 6,	$\pi((n-3)!)$	р	p-2
	n = p, p - 2 prime			
$A_1(q)$	$3 < q \equiv arepsilon(4)$,	$\pi(q-\varepsilon)$	$\pi(q)$	$q + \varepsilon$
	$\varepsilon = \pm 1$			2
$A_1(q)$	q > 2, q even	{2 }	q-1	q + 1
${}^{2}A_{5}(2)$		{2, 3, 5}	7	11
${}^{2}D_{p}(3)$	$p=2^m+1\geq 3$	$\pi(3(3^{p-1}-1) \prod_{i=1}^{p-2} (3^{2i}-1))$	$\frac{3^{p-1}+1}{2}$	$\frac{3^p+1}{4}$
$G_2(q)$	$q \equiv 0(3)$	$\pi = \pi (q(q^2 - 1))$	$q^2 - q + 1$	$q^2 + q + 1$
${}^{2}G_{2}(q)$	$q = 3^{2m+1} > 3$	$\pi(q(q^2-1))$	$q - \sqrt{3q} + 1$	$q + \sqrt{3q} + 1$
$F_4(q)$	qeven	$\pi(q(q^4-1)(q^6-1))$	$q^4 - q^2 + 1$	$q^{4} + 1$
${}^{2}F_{4}(q)$	$q = 2^{2m+1} > 2$	$\pi(q(q^3+1)(q^4-1))$	$q^2 - \sqrt{2q^3}$	$q^2 + \sqrt{2q^3} + q + \sqrt{2q} + 1$
			$+q-\sqrt{2q}$	
			+1	
$E_{7}(2)$		<i>{</i> 2 <i>,</i> 3 <i>,</i> 5 <i>,</i> 7 <i>,</i> 11 <i>,</i> 13 <i>,</i> 17 <i>,</i> 19 <i>,</i> 31 <i>,</i> 43 <i>}</i>	73	127
$E_{7}(3)$		$\{2, 3, 5, 7, 11, 13, 19, 37, 41, 61, 7$	757	1093
<i>M</i> ₁₁		{2,3}	5	11
M ₂₃		{2, 3, 5, 7}	11	23
M_{24}		{2, 3, 5, 7}	11	23
J ₃		{2, 3, 5}	17	19
HiS		{2, 3, 5}	7	11
Suz		{2, 3, 5, 7}	11	13
Co_2		{2, 3, 5, 7}	11	23
Fi ₂₃		{2, 3, 5, 7, 11, 13}	17	23
F_3		{2, 3, 5, 7, 13}	19	31
F_2		<i>{</i> 2, 3, 5, 7, 11, 13, 17, 19, 23 <i>}</i>	31	47

3. Proof of main theorems

3.1. Proof of Theorem A

Let $M = {}^{2} D_{n}(2)$, where $n = 2^{m} + 1 \ge 5$. Assume that G is a finite group such that |G| = |M| and D(G) = D(M). Recall that t(M) = 2 and $\pi(M) = \pi(2^{n(n-1)}(2^{n} + 1)(2^{n-1} - 1)\prod_{i=1}^{n-2} (2^{2i} - 1))U\pi(2^{n-1} + 1)$. By assumption, $|\pi(2^{n-1} + 1)|$

1) |= 1, so $\pi(2^{n-1} + 1) \in T(G) - {\pi_1(G)}$. This shows that $t(G) \ge 2$. First, suppose that $t(G) \ge 3$. We are going to reach a contradiction under this assumption. Thus by Lemma 2.4, *G* is neither a Frobenius group nor a 2-Frobenius group and hence, by Lemma 2.6(ii), there is a normal series $1 \le H \lhd K \le G$ for *G* such that $P = \frac{K}{H}$ is a nonabelian finite simple group and every odd order component of G is an odd order component of Pand H is a nilpotent group. So $t(P) \ge 3$ and

$$2^{n-1} + 1 \in OC(P) - \{m_1(P)\}, \text{ where } n = 2^m + 1 \ge 5.$$
 (1)

Thus the classification theorem of finite simple groups and Tables 1 and 3 show that one of the following possibilities holds for P:

Case 1.

 $P \cong^2 A_5(2), E_7(2), E_7(3), M_{11}, M_{23}, M_{24}, J_3, HiS, Suz, Co_2, F_2, F_3, Fi_{23}, A_2(4), M_{22}, J_1, O'N, LyS, F_1, J_4,^2 E_6(2), Fi'_{24}.$ By (1), $(2^{n-1} + 1) \in OC(P) - \{m_1(P)\}$. Since $n \ge 5$, $2^{n-1} + 1 \ge 17$. Thus considering the odd order components of the finite simple groups mentioned above leads to $P \cong J_3, Fi_{23},^2 E_6(2)$ or Fi'_{24} . In these cases, we can see that n = 5 and |P| does not divide $|G| = |^2 D_5(2)|$, which is impossible.

Case 2.

$$\begin{split} P &\cong A_p, \text{ where } p > 6 \text{ and } p, p-2 \text{ are prime. Then} \\ OC(P) &= \{m_1(P)\} = \{p, p-2\}, \text{ so by (1)}, \\ 2^{n-1} + 1 \in \{p, p-2\}. \text{ If } p = 2^{n-1} + 1, \text{ then for} \\ \text{every } m \geq 3, \text{ the largest power of 2 dividing } |A_p| \\ \text{ is } \left(\left[\frac{p}{2}\right] + \left[\frac{p}{4}\right] + \cdots\right) - 1 = \left(\left[\frac{2^{n-1}+1}{2}\right] + \left[\frac{2^{n-1}+1}{2^2}\right] + \cdots\right) - \\ 1 = 2^{n-2} + 2^{n-3} + \ldots + 2 + 1 - 1 = 2^{n-1} - 2 > n(n-1). \end{split}$$

But $|G|_2 = |M|_2 = 2^{n(n-1)}$, so $|P| \nmid |G|$, which is impossible. If m = 2, then p = 17, so $|P| \nmid |G|$. If $p - 2 = 2^{n-1} + 1$, then $p = 2^{n-1} + 3$, so the same argument as above leads us to a contradiction.

Case 3.

 $P \cong^2 D_p(3)$, where $p = 2^{m'} + 1 \ge 5$. Then $OC(P) - \{m_1(P)\} = \{\frac{3^{p-1}+1}{2}, \frac{3^{p}+1}{4}\}$. Thus (1) shows that either $3^{p-1} - 2^n = 1$ or $3^p = 2^{n+1} + 3$. If $3^{p-1} - 2^n = 1$, then by Lemma 2.7(i), p = 3and n = 3, contradiction with assumption on n. If $3^p - 3 = 2^{n+1}$, then $3|2^{n+1}$, which is impossible.

Case 4.

 $P \cong A_1(q)$ and 2 < q is even. Then $OC(P) - \{m_1(P)\} = \{q - 1, q + 1\}$. Thus (1) shows that $2^{n-1} + 1 \in \{q - 1, q + 1\}$. If $q - 1 = 2^{n-1} + 1$, then $q = 2(2^{n-2} + 1)$, so q is not a power of 2, a contradiction. If $q + 1 = 2^{n-1} + 1$, then $q = 2^{n-1}$. Set $|\frac{G}{K}| = t$, so |G| = t|H||P|. Of course by Lemma 2.6(ii) and Lemma 2.9(i), $t|2^m$, so

$$t|H| = \frac{|G|}{|P|} = \frac{|{}^{2}D_{n}(2)|}{|A_{1}(q)|} = 2^{(n-1)^{2}}(2^{n}+1)\prod_{i=1}^{n-2} (2^{2i}-1)$$

Thus for every $r \in R_{2n}(2)$, r||H|. If $S \in Syl_r(H)$, then the order of S is a divisor of $2^n + 1$

and by Lemma 2.8, $m_2m_3|(|S|-1)$, which is a contradiction.

Case 5.

 $P \cong A_1(q)$, where $q \equiv -1 \pmod{4}$. Then $OC(P) - \{m_1\} = \{q, \frac{q-1}{2}\}$. Thus by (1), $2^{n-1} + 1 \in \{q, \frac{q-1}{2}\}$. If $q = 2^{n-1} + 1$, then $q \equiv 1 \pmod{4}$, which is a contradiction. Now we assume that $\frac{q-1}{2} = 2^{n-1} + 1$, so $q = 2^n + 3$. Since $n = 2^m + 1 \ge 5$, an easy computation shows that $5|2^n + 3$, so q is a power of 5, say $q = 5^f$. Thus $q \equiv 1 \pmod{4}$, which is a contradiction.

Case 6.

 $P \cong A_1(q)$, where $q \equiv 1 \pmod{4}$. Then $OC(P) - \{m_1(P)\} = \{q, \frac{q+1}{2}\}$. Thus by (1), $2^{n-1} + 1 \in \{q, \frac{q+1}{2}\}$. First assume that $q = 2^{n-1} + 1$ and $q = p^{\alpha}$, where $\alpha \ge 1$. So we have the following subcases:

(i) if $\alpha > 1$, then by Lemma 2.7(i), $\alpha = 2$ and n = 4, which is not the case;

(ii) if $\alpha = 1$, we have $q = p = 2^{n-1} + 1$. Now we set $|\frac{G}{K}| = t$, so |G| = t|H||P|. By Lemma 2.6(ii) and Lemma 2.9(i), t|2. Thus

$$t|H| = \frac{|G|}{|P|} = 2^{(n-1)^2} (2^n + 1)(2^{n-1} - 1)(2^{n-2} - 1) \prod_{i=1}^{n-3} (2^{2i} - 1),$$

so repeating the argument given for Case 4 leads us to a contradiction.

If $\frac{q+1}{2} = 2^{n-1} + 1$, then $q = 2^n + 1$. Assume that $q = p^{\alpha}$ where $\alpha \ge 1$. So we have the following subcases:

(i) if $\alpha > 1$, then by Lemma 2.7(i), $\alpha = 2$ and n = 3, which is not the case;

(ii) if $\alpha = 1$, then $q = p = 2^n + 1$ shows that p is a Fermat prime, and so n must be a power of 2, which is a contradiction because $n = 2^m + 1$ is an odd prime.

Case 7.

 $P \cong G_2(q)$, where $q \equiv 0 \pmod{3}$ or $P \cong^2 G_2(q)$, where $q = 3^{2m+1} > 3$. If $P \cong G_2(q)$, then the same reasoning as above shows that $q^2 + q + 1 =$ $2^{n-1} + 1$ or $q^2 - q + 1 = 2^{n-1} + 1$. But $q^2 +$ q + 1, $q^2 - q + 1 \equiv 1 \pmod{3}$ and $2^{n-1} + 1 \equiv$ $2 \pmod{3}$ and hence, both cases are ruled out. If $P \cong^2 G_2(q)$, then the same reasoning as above leads to a contradiction.

Case 8.

 $P \cong^2 F_4(q)$ or $P \cong^2 B_2(q)$. Then the odd order components of P is a number of the form $2^i f(2) + 1$ such that gcd(2, f(2)) = 1. If $2^i f(2) + 1 = 1$ $2^{n-1} + 1$, then we obtain $2^i f(2) = 2^{n-1}$, which is a contradiction.

Case 9.

 $P \cong F_4(q)$, where q is even. Then $OC(P) - \{m_1(P)\} = \{q^4 + 1, q^4 - q^2 + 1\}$, so by (1), $2^{n-1} + 1 \in OC(P) - \{m_1\}$. If $2^{n-1} + 1 = q^4 - q^2 + 1$, then $2^{n-1} = q^2(q^2 - 1)$, which is impossible. If $2^{n-1} + 1 = q^4 + 1$, then $q^4 = 2^{n-1}$. If n = 5, then $|P|_2 = 2^{24}$ which does not divide $|G|_2 = 2^{20}$. Thus $n \ge 6$ and hence, Zsigmondy's Theorem allows us to assume that r is a primitive prime divisor of $2^{\frac{3}{2}(n-1)} - 1$, but considering |P|and |G|, we have

$$(2^{\frac{3}{2}(n-1)}-1)|2^{(n-6)(n-1)}(2^n+1)\prod_{i=1,i\neq i_0,i_1}^{n-2}(2^{2i}-1),$$

where $i_0 = \frac{n-1}{2}$, $i_1 = \frac{3}{4}(n-1)$. Thus: (i) if $r|2^{(n-1)(n-6)}$, then r = 2, which is a

(i) if $r|2^{(n-1)(n-6)}$, then r = 2, which is a contradiction;

(ii) if $r|(2^{n} + 1)$, then $r|(2^{2n} - 1)$, so $r|(2^{2n} - 1) - (2^{\frac{3}{2}(n-1)} - 1)$. Therefore $r|2^{\frac{3}{2}(n-1)}(2^{2n-\frac{3}{2}(n-1)} - 1)$, hence $r|(2^{2n-\frac{3}{2}(n-1)} - 1)$ implies that $2n - \frac{3}{2}(n-1) \ge \frac{3}{2}(n-1)$ and so $n \le 3$, contradicting; (iii) if $r|\prod_{i=1, i \ne i_0, i_1}^{n-2}(2^{2i} - 1)$, then for some j, $1 \le j \le n - 2, j \notin \{i_0, i_1\}$, the same argument as above shows that j > n - 2, which is a contradiction.

This shows that $|\mathbf{P}| \nmid |\mathbf{G}|$, which is contradiction.

Case 10.

 $P \cong E_8(q). \text{ If } P \cong E_8(q) \text{ with } q \equiv 2,3 \pmod{5},$ then the odd order components of P are $q^8 + q^7 - q^5 - q^4 - q^3 + q + 1, q^8 - q^7 + q^5 - q^4 + q^3 - q + 1 \text{ and } q^8 - q^6 + q^4 - q^2 + 1. \text{ If } 2^{n-1} + 1 = q^8 + q^7 - q^5 - q^4 - q^3 + q + 1, \text{ then:}$ (i) if $q \equiv 2 \pmod{5}$, then $q^8 + q^7 - q^5 - q^4 - q^3 + q + 1 \equiv 1 \pmod{5},$ but $2^{n-1} + 1 \equiv 2 \pmod{5},$ which is a contradiction;

(ii) if $q \equiv 3(mod5)$, then we get a contradiction in a similar manner.

Therefore, $2^{n-1} + 1 = q^8 - q^7 + q^5 - q^4 + q^3 - q + 1$ or $2^{n-1} + 1 = q^8 - q^6 + q^4 - q^2 + 1$, then the same reasoning as above leads to a contradiction. If $P \cong E_8(q)$, where $q \equiv 0, 1, 4 \pmod{5}$, then we get a contradiction in a similar manner.

The above contradictions imply that t(G) = 2, so $\pi_1(G) = \pi_1(M)$ and $\pi_2(G) = \pi_2(M)$. Thus OC(G) = OC(M), so the main theorem in [14] shows that $G \cong M$, as claimed.

3.2. Proof of Theorem B

Let $M = {}^{2} D_{n}(3)$, where $n = 2^{m} + 1 \ge 9$ is not prime. Assume that *G* is a finite group such that |G| = |M| and D(G) = D(M). Recall that t(M) =2 and $\pi(M) = \pi(\frac{1}{2}, 3^{n(n-1)}(3^{n} + 1)(3^{n-1} -$ 1) $\prod_{i=1}^{n-2} (3^{2i} - 1)) U\pi(\frac{3^{n-1}+1}{2})$. By assumption, $|\pi(\frac{3^{n-1}+1}{2})| = 1$, so $\pi(\frac{3^{n-1}+1}{2}) \in T(G) - {\pi_1(G)}$. This shows that $t(G) \ge 2$. First suppose that $t(G) \ge 3$. We will reach a contradiction under this assumption. Thus by Lemma 2.4, *G* is neither a Frobenius group nor a 2-Frobenius group and hence, by Lemma 2.6(ii), there is a normal series $1 \le H \lhd K \le G$ of *G* such that $P = \frac{K}{H}$ is a nonabelian finite simple group, *H* is a nilpotent group and every odd order component of *G* is an odd order component of *P*. So $t(P) \ge 3$ and

$$\frac{3^{n-1}+1}{2} \in OC(P) - \{m_1(P)\}, \text{ where } n = 2^m + 1 \ge 9 \text{ is not prime.}$$
(2)

Thus the classification theorem of finite simple groups and Tables 1 and 3 show that one of the following possibilities holds for P:

Case 1. $P \cong^2 A_5(2), E_7(2), E_7(3), M_{11}, M_{23}, M_{24}, J_3, HiS, Suz, Co_2, F_2, F_3, Fi_{23}, A_2(4), M_{22}, J_1,$ $O'N, LyS, F_1, J_4, ^2 E_6(2), Fi'_{24}.$ By (2), $\frac{3^{n-1}+1}{2} \in OC(P) - \{m_1\}$, so $\frac{3^{n-1}+1}{2} \ge 3281^{"}$ implies that $\frac{3^{n-1}+1}{2}$ is larger than every odd order component of the above groups.

Case 2.

$$\begin{split} P &\cong A_p, \text{ where } p > 6 \text{ and } p, p-2 \text{ are prime. Then } \\ OC(P) &= \{m_1(P)\} = \{p, p-2\} \text{ and hence, by (2),} \\ \frac{3^{n-1}+1}{2} \in \{p, p-2\}. \text{ If } p = \frac{3^{n-1}+1}{2}, \text{ then } p-2 = \frac{3(3^{n-2}-1)}{2}. \text{ But } p-2 \text{ is prime, so } 3^{n-2}-1=2. \\ \text{Therefore } n = 3, \text{ contradiction with assumption on } \\ n. \text{ If } p-2 = \frac{3^{n-1}+1}{2}, \text{ then } p = \frac{3^{n-1}+5}{2}, \text{ so the } \\ \text{largest power of 3 dividing } |A_p| \text{ is } [\frac{p}{3}] + [\frac{p}{9}] + \ldots > \\ \frac{3^{n-2}-1}{2} > n(n-1). \text{ But } |G|_3 = |M|_3 = 3^{n(n-1)}, \text{ so } \\ |P| \neq |G|. \end{split}$$

Case 3.

 $P \cong^2 D_p(3)$, where $p = 2^{m'} + 1 \ge 5$ is prime. Then $OC(P) - \{m_1(P)\} = \{\frac{3^{p-1}+1}{2}, \frac{3^{p}+1}{4}\}$. If $\frac{3^{n-1}+1}{2} = \frac{3^{p-1}+1}{2}$, then p = n, which is a contradiction, because assumption says that n is not prime. If $\frac{3^{p}+1}{4} = \frac{3^{n-1}+1}{2}$, then $3^p + 1 = 2(3^{n-1} + 1)$ 1). We obtain that $3^p = 2 \cdot 3^{n-1} + 1 \equiv 1 \pmod{3}$, which is a contradiction. Thus both cases are ruled out.

Case 4.

 $P \cong A_1(q)$ and 2 < q is even. Then OC(P) – $\{m_1(P)\} = \{q - 1, q + 1\}$. Thus (2) shows that $\frac{3^{n-1}+1}{2} \in \{q-1, q+1\}$. If $q-1 = \frac{3^{n-1}+1}{2}$, then $3^{n-1} + 3 = 2q$. So 3|q, which is a contradiction. Therefore, $q + 1 = \frac{3^{n-1}+1}{2}$, so $3^{n-1} - 2q = 1$. Since q is a power of 2, then by Lemma 2.7(i), n = 3, which is not the case.

Case 5.

Case 5. $P \cong A_1(q)$, where $q \equiv -1 \pmod{4}$. Then $OC(P) - \{m_1(P)\} = \{q, \frac{q-1}{2}\}$. Thus by (2), $\frac{3^{n-1}+1}{2} \in \{q, \frac{q-1}{2}\}$. If $q = \frac{3^{n-1}+1}{2}$, then 2(q+1) = $3^{n-1}+3$. But $2(q+1) \equiv 0 \pmod{8}$ and $2^{n-1}+2 = 4 \pmod{9}$, which is a contradiction. If $3^{n-1} + 3 \equiv 4 \pmod{8}$, which is a contradiction. If $\frac{q-1}{2} = \frac{3^{n-1}+1}{2}$, then $q = 3^{n-1} + 2$. This shows that $q - 1 = 2\frac{3^{n-1}+1}{2}$. But by our assumption $\pi(\frac{3^{n-1}+1}{2}) = \{r\}$ and hence $q - 1 = 2r^t$. Assume $q = p^{\alpha}$ where $\alpha \ge 1$ and obviously p > 3, because $q \equiv 1 \pmod{2}$ and $q \equiv 2 \pmod{3}$. So we have the following subcases: (i) if $\alpha > 1$, then p - 1|q - 1, so $p - 1|2r^{t}$.

Hence p - 1|2, which is a contradiction; (ii) if $\alpha = 1$, we have $q = p = 3^{n-1} + 2$. Now we set $\left|\frac{G}{K}\right| = t$, so |G| = t|H||P|. By Lemma 2.6(ii)

and Lemma 2.9(i), t|2. Thus 101

$$3^n + 1|t|H| = \frac{|G|}{|P|}$$

so for every $r \in R_{2n}(3)$, r||H|. If $S \in Syl_r(H)$, then the order of **S** is a divisor of $3^n + 1$ and by Lemma 2.8, $m_2 m_3 | (|S| - 1)$, which is a contradiction.

Case 6.

 $P \cong A_1(q)$, where $q \equiv 1 \pmod{4}$. Then OC(P) – $\{m_1(P)\} = \{q, \frac{q+1}{2}\}$, so by (2), $\frac{3^{n-1}+1}{2} \in \{q, \frac{q+1}{2}\}$. First assume that $\frac{q+1}{2} = \frac{3^{n-1}+1}{2}$, so $q = 3^{n-1}$. Now we set $|\frac{G}{K}| = t$, so |G| = t|H||P|, of course by Lemma 2.6(ii) and Lemma 2.9(i), $t|2^{m+1}$. Thus

$$t|H| = \frac{|G|}{|P|} = \frac{1}{2}3^{(n-1)^2}(3^n+1)\prod_{i=1}^{n-2}(3^{2i}-1).$$

This implies that for every $r \in R_{2n}(3)$, r||H|. If $S \in Syl_r(H)$, then the order of S is a divisor of $3^{n} + 1$ and by Lemma 2.8, $m_{2}m_{3}|(|S| - 1)$, which is a contradiction. This leads to $q = \frac{3^{n-1}+1}{2}$ and $q = p^{\alpha}$, so by Lemma 2.7(ii), $\alpha = 1$ and the same reasoning as above leads to get a contradiction.

Case 7.

 $P \cong G_2(q)$, where $q \equiv 0 \pmod{3}$ or $P \cong^2 G_2(q)$, where $q = 3^{2m+1} > 3$. If $P \cong G_2(q)$, then the same reasoning as above shows that $q^2 + q + 1 =$ $\frac{3^{n-1}+1}{2}$ or $q^2 - q + 1 = \frac{3^{n-1}+1}{2}$. But $2q^2 + 2q + q$ $1, \bar{2}q^2 - 2q + 1 \equiv 1 \pmod{3}$ and $3^{n-1} \equiv 1$ **0**(*mod* **3**) and hence, both cases are ruled out. If $P \cong^2 G_2(q)$, then the same reasoning as above leads to get a contradiction.

Case 8. $P \cong^2 F_4(q)$, where $q = 2^{2m'+1} > 2$. Then $OC(P) - \{m_1(P)\} = \{q^2 + \sqrt{2q^3} + q + \sqrt{2q} +$ 1, $q^2 - \sqrt{2q^3} + q - \sqrt{2q} + 1$ }, so by (2), $\frac{3^{n-1}+1}{2} \in$ $OC(P) - \{m_1\}$. If $\frac{3^{n-1}+1}{2} = q^2 + \sqrt{2q^3} + q + \sqrt{2q} + 1$, then $3^{n-1} = 2^{4m'+3} + 2^{3m'+3} + q^{3m'+3}$ $\sqrt{2q} + 1$, then $3^{n-1} = 2^{4m'+3} + 2^{3m'+3} + 2^{2m'+2} + 2^{m'+2} + 1$. But $3^{n-1} \equiv 0 \pmod{3}$ and $2^{4m'+3} + 2^{3m'+3} + 2^{2m'+2} + 2^{m'+2} + 1 \equiv 2^{n-1+4}$ 1(mod3), which is a contradiction. If $\frac{3^{n-1}+1}{2} =$ $q^2 - \sqrt{2q^3} + q - \sqrt{2q} + 1$, then we get a contradiction in a similar manner.

Case 9.

 $P \cong F_4(q)$, where q is even. Then OC(P) – $\{m_1\} = \{q^4 + 1, q^4 - q^2 + 1\}$, so by (2), $\frac{3^{n-1}+1}{2} \in$ $OC(P) - \{m_1(P)\}$. If $\frac{3^{n-1}+1}{2} = q^4 + 1$, then $3^{n-1} - 2q^4 = 1$. Hence by Lemma 2.7(ii), n = 3, contraction with our assumption. Therefore $\frac{3^{n-1}+1}{2} = q^4 - q^2 + 1$, so $3^{n-1} = 2q^4 - 2q^2 + 1$. Since q is a power of 2, an easy computation shows that $2q^4 - 2q^2 + 1 \equiv 1 \pmod{3}$, which is a contradiction.

Case 10. $P \cong^2 B_2(q)$, where $q = 2^{2m'+1} > 2$. Then $OC(P) - \{m_1\} = \{q + \sqrt{2q} + 1, q - \sqrt{2q} + 1\}$ 1, q - 1}, so by (2), $\frac{3^{n-1}+1}{2} \in OC(P) - \{m_1\}$. If $\frac{3^{n-1}+1}{2} = q - 1$, then $3^{n-1} + 3 = 2q$, therefore 3|q, which is a contradiction. If $\frac{3^{n-1}+1}{2} = q + q$ $\sqrt{2q} + 1$, then $3^{2^m} = 2^{2(m'+1)} + 2 \cdot 2^{m'+1} + 1$ and hence, $(3^{2^{m-1}})^2 = (2^{m'+1} + 1)^2$. Thus $3^{2^{m-1}} =$ $2^{m'+1} + 1$, so by Lemma 2.7(i), m = 2, which is

impossible. If $\frac{3^{n-1}+1}{2} = q - \sqrt{2q} + 1$, $3^{n-1} = 2^{2m'+2} - 2^{m'+2} + 1$. Thus: then (i) if m' is odd, then $1 \equiv 3^{n-1} = 2^{2m'+2} - 2^{2m'+2}$ $2^{m'+2} + 1 \ge 1 \pmod{5}$, which is a contradiction; (ii) if m' is even, then $0 \equiv 3^{n-1} = 2^{2m'+2}$ – $2^{m'+2} + 1 \equiv 1 \pmod{3}$, which is a contraction.

Case11.

 $P \cong E_8(q)$. If $P \cong E_8(q)$ with $q \equiv 2, 3 \pmod{5}$, then the odd order components of **P** are $q^8 + q^7 - q^8 + q^7$ $q^{5} - q^{4} - q^{3} + q + 1$, $q^{8} - q^{7} + q^{5} - q^{4} + q^{3} - q^{7} + q^{5} - q^{4} + q^{3} - q^{6}$ q + 1 and $q^8 - q^6 + q^4 - q^2 + 1$. If $\frac{3^{n-1}+1}{2} =$ $q^{8} + q^{7} - q^{5} - q^{4} - q^{3} + q + 1$, then: (i) if $q \equiv o(mod3)$, then $2(q^8 + q^7 - q^5 - q^4 - q^5)$ $q^3 + q + 1$ $\equiv 2 \pmod{3}$ and hence, $3^{n-1} + 1 \equiv$ 2(mod3), which is a contradiction;

(ii) if $q \equiv 1, 2 \pmod{3}$, then we get a

contradiction in a similar manner. Therefore $\frac{3^{n-1}+1}{2} = q^8 - q^7 + q^5 - q^4 + q^3 - q^4 + q^4 - q^2 + 1$, then the same reasoning as above leads to get a contradiction. If $P \cong E_8(q)$, where $q \equiv$ 0, 1, 4(mod 5), then we get a contradiction in a similar manner.

The above contradictions imply that t(G) = 2, so $\pi_1(G) = \pi_1(M)$ and $\pi_2(G) = \pi_2(M)$. Thus OC(G) = OC(M) and hence, the main theorem in [15] shows that $G \cong M$, as claimed.

References

- [1] Moghaddamfar, A. R., Zokayi, A. R. & Darafsheh, M. R. (2005). A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq., 12(3), 431-442.
- [2] Moghaddamfar, A. R. & Zokayi, A. R. (2010). ODcharacterization of certain finite groups having connected prime graphs. Algebra Collog., 17(1), 121-130.
- [3] Zhang, L. & Shi, W. (2008). OD-characterization of all simple groups whose orders are less than 10^8 . Math. China, 3(3), 461-474.
- [4] Akbari, M. & Moghaddamfar, A. R. (2012). Simple groups which are 2-fold OD-characterizable. Bull. Malaysian Math. Soc., 35(1), 65-77.
- [5] Zsigmondy, K. (1892). Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3(1), 265-284.
- [6] Vasiliev, A. V. & Vdovin, E. P. (2005). An adjacency criterion for the prime graph of a finite simple group. Algebra and Logic, 44(6), 381-406.
- [7] Vasiliev, A. V. & Vdovin, E. P. (2011). Cocliques of maximal size in the prime graph of a finite simple group. Algebra and Logic, 50(4), 291-322.

- [8] Chen, G. Y. (1995). On structure of Frobenius and 2-Frobenius groups. J. Southwest China Normal University, 20(5), 485-487.
- [9] Willams, J. S. (1981). Prime graph components of finite groups. J. Algebra, 69(2), 487-513.
- [10] Crecenzo, P. (1975). A diophantine equation which arises in the theory of finite groups. Adv. Math., 17, 25 - 29
- [11] Chen, G. Y. (1996). A new characterization of sporadic groups. Algebra Colloq., 3(1), 49-58.
- [12] Kleidman, P. B. & Liebeck, M. (1990). The subgroup structure of finite classical groups, Cambridge Univ. Press.
- [13] Kondrat'ev, A. S. (1990). Prime graph components of finite simple groups, Math. USSR-Sb., 67(1), 235-247.
- [14] Darafsheh, M. R. & Mahmiani, A. (2009). A characterization of the group ${}^{2}D_{n}(2)$ where $n = 2^{m} +$ $1 \ge 5. J. Appl. Math. Comput., 31, 447-457.$
- [15] Chen, G. Y. & Huaguo, S. (2005). ${}^{2}D_{n}(3)(9 \le n =$ $2^m + 1$ not prime) can be characterized by its order components. J. Appl. Math. comput., 19, 353-362.