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Abstract

In this paper, it was shown that 2D, (2), where n = 2™ +1 > 5 and [n(2" ! + 1)| = 1, and ?D,(3), where
n=2"+12>9isnot prime and |n(¥)| = 1, are OD-characterizable.
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1. Introduction

Let G be a finite group, (G) the set of al prime
divisors of its order and let w(G) be the spectrum
of G, that isthe set of its element orders. The prime
graph GK(G) of G isasimple graph with vertex set
m(G) in which two distinct vertices p and q are
joined by an edge (and written p~q) if and only if
pq € w(G). Denote by t(G) the number of
connected components of GK(G). The i-th
connected component is denoted by m; = m;(G) for
each i. If 2 € m(G), then we assume that 2 € m;.
For pem(G), deg(p)=I|{q € n(G)|p~q}| is
caled the degree of p. If ®(G) = {p1,P2,---,Px}
with p; < p; <...< pk, We aso define D(G) =
(deg(p1), deg(ps),..., deg(py)) which is caled
the degree pattern of G. It is clear that the order of
G can be expressed as the product of the numbers
my,my,..., Myg, Wwhere m(m;) =m;1<i<
t(G). If the order of G is even and t(G) = 2,
according to our notation my, ms, ..., Mg are odd
numbers. The positive integers my, my, ..., my,
are called the order components of G and OC(G) =
{m;,m,,...,my} is caled the set of order
components of G, and T(G) = {m;(G)|i=
1,2,...,t(G)} is caled the set of connected
components of G. set
Qo(G) = {p € m(G)|deg(p) = 0} and Q,(G) =
{p € n(G)|deg(p) # 0}. Clearly, n(G) =
Q(G) U Q4,(G). Given afinite group M, denote by
hgp(M) the number of isomorphism classes of
finite groups G such that |G| = [M| and D(G) =
D(M). A finite group M is caled k-fold OD-
characterizable if hgp (M) = k. Usudly a 1-fold
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OD-characterizable group is simply called OD-
characterizable [1]. Also in [1], Darafsheh et.al
proved that the sporadic simple groups, alternating
groups A,, where p and p —2 are primes, and
some simple groups of Lie type are OD-
characterizable, and S¢(3) and 0,(3) are 2-fold
OD-characterizable groups. In [2], it has been
proved that A,y is 2-fold OD-characterizable. In
[3], it has been proved that all simple groups whose
orders are less than 108 except A, and U,(2) are
OD-characterizable. According to [4], B.(3) and

C.(3), wherer is an odd prime and |1'[(3r2—_1)| =1
and B, (q), C,(q), for certain n, q, and the simple
groups B3(5) and C3(5) ae 2-fold OD-
characterizable. In this paper, we prove that:

Theorem A. Let G be a finite group such that
|G| = |?D,4(2)| and D(G) = D(*D,(2)), where
n=2"+1>5 and |m(2"1+1)]=1. Then
G =2 D, (2).

Theorem B. Let G be a finite group such that
|G| = |?D,s(3)| and D(G) = D(*D,(3)), where

n—-1
n=2M+1>9isnot primeand |n(32—+1)| =1.

Then G =2 D, (3).

2. Preliminary results

If a is a natural number, r is an odd prime and
(r,a) = 1, then by e(r,a) we denote the smallest
natural number n with a™ = 1(mod r). A primer
with e(r,a) = n is called a primitive prime divisor
of a" — 1. We denote by R,(a) the set of al the
primitive prime divisors of a™ —1 and by r,(a)
every element of R, (a), and n,, is p-part of n.
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Lemma 2.1. (Zsigmondy 's Theorem)[5]Let a and
n be integers greater than 1. There exists a prime
divisor p of a®™ —1 such that p does not divide
al—1 for al 1<j<n, except exactly in the
following cases:

(i)n=2a=2%-1,wheres > 2;
(il'n=6,a=2.

By Zsigmondy's Theorem,R,(a) # ¢, unless
a=2,n=6o0rn=2and

a = 2% — 1 for some natural number w. Obviously
by Fermat's little theorem it follows that
e(r,a)lr—1. Also, if a™ = (mod r), then
e(r,a)lm. Also, for an integer n, by n(n) we
denote the following function:

n nisodd

nn) = {E
2

otherwise.

Lemma 2.2. [6, 7] Let G =% D,(q) be a finite
simple group of Lie type over a fidd of
characteristic p. Let r and s be odd primes and
r,s € m(G)\{p}. Put k=-e(r,q) and 1 = e(s, q).
Then:

(i) r and p are non-adjacent if and only if
n(e(r,q) >n-2;

(i) if 1 <nk) <n@), then r and s are non-
adjacent if and only if 2n(k) +2n() > 2n—
(1 + (—1D)kHh and% is not an odd natural number;
(iii) if p # 2, then r and 2 are non-adjacent if and
only if one of the following holds:
Ink)=nand(4,q"+1) = (q" + 1),;

2.q(K) =;=n-1,nisoddande(2,q) = 2.

Lemma 2.3. Let M=2D,(p), where p € {2,3},
n—1

n=2"+1 and |n(‘(’2p—_+1;)| = 1. Then deg(p) =

[t(M)| — (2 + [Rzn(P)D)-

Proof: First assume that p = 2 and s € (G)\{2}.
Then by Table 2, we have (M) = m(2""1 + 1)
and by Lemma 2.2(i), s is non-adjacent to 2 if and
only if s€Rz(2) URyp-1)(2). But since
RZ(n—l)(Z) c T[(Zn_l + 1), we have
IR2(n-1)(2)| = 1. Therefore deg(2) = [t(M)| —
(2 4 |R2,(2)]). For p =3, the same argument
showsthat deg(3) = [m(M)| — (2 + [R2,(3)]).

Lemma 2.4. [8] Let G be either a Frobenius group
or a 2-Frobenius group of even order. Then
t(G) = 2.

Lemma 2.5. [1] Let ¢ and M be finite groups such
that |G| = |M| and D(G) = D(M). In addition, we
suppose one of the following conditions holds:

(l) |2,,(M)| = 0;

(“) |2,/ (M)| = 2;

(i) 12, (M)| =3 and there exists a vertex
p € (M) suchthat deg(p) = |2,,(M)| — 2.
Then 0C(G) = 0C(M).

Lemma 2.6. [8, 9] Let G be a finite group with
t(G) = 2. Then one of the following holds:
(i) G isaFrobenius or a 2-Frobenius group;
(i) G hasanormal series1 < H = K 2 G such that

H and % are 1, -groups and % is a non-abelian finite
simple group. Moreover, H is nilpotent, |%| divides
|0ut(§)| and every odd order component of G isan
odd order component of g

Lemma 2.7. [10] Let p and q be primes and
m,n > 1. Then:

(i) the only solution of the diophantine eguation
p"—q" =1is(p™ q") = (3%,2%);

(i) with the exceptions of the relations (239)% —
2(13)* = —1 and 35 — 2.11%2 = 1 every solution
of p™ — 2q™ = 1 has exponents of m = n = 2,

1
i.e. it comes from a unit p — q. 22 of the quadratic
1
field Q(22).

Lemma 2.8. [11] Let ¢ be a finite group with
t(G)=2. If H=2G is a mp-group, then
(IT1<jzi<ee) my) divides |H| — 1.

Lemma 2.9. [12] Let G = A,(q) be afinite simple
group of Lie type over a field of characteristic p,
where g = p*. Then:
() if I = 1, then |Out(G)| = gcd(2,q — 1)k;
(i) if 1=2, then |Out(G)| =2gcd(l+1,q—
k.

The list of finite simple groups with disconnected
prime graph and their odd order components is
givenin Table 1-3[9, 13].
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Table 1. Finite Simple Groups P with t(P) > 3

P Restrictionson P . (P) m, ms my ms  mg
A,(4) {2} 3 5 7
’B3(q) q=2"""1>2 {2} q-1 q—+J2q+1 q+./2q+1
2E.(2) {2,3,5,7,11} 13 17 19
Eg(q) q=2,3(5 n(q(q@®-1)(@%-1) ¢°+¢*+1 ¢®-q*+1 ¢"°-¢*+1

@*-D@®%-D@*-1) gZ+qg+1 ?-q+1
M, (2,3} 5 7 11
J1 {2,3,5} 7 11 19
O'N {2,3,5,7} 11 19 31
LyS (2,3,5,7,11} 31 37 67
Fi'y, 2,3,5,7,11,13} 17 23 29

Fq {2,3,5,7,11,13,17,19,23, 2 41 59 71

Eg(q) q=0,1,4(5) n(q@®-1@°-1) q°+¢°+1 ¢°-¢°+1 ¢®°—q*+1 q"°+1
@?-D@"*-1)@®-1) gZrg+1 q¢¢?—q+1 q?+1
J4 (2,3,5,7,11} 23 29 31 37 43
Table 2. Finite Simple Groups P with t(P) = 2
P Restrictionson P 1(P) m,
A, 6<n=pp+1p+2 n((n—3)) P
norn — 2 isnot prime
Ap1(@) (p.q) #(3,2),(3,4) 1—["‘1 ; -1
-1
B T D@.g-1)
A -D(p+1 p-1 qv -
2 -1 14
Ay_1(q) 1—[" i ; q’+1
L (=1)
2 n(q . (q 1 =1 q+ 12’@’;” D
A,(q)  (@+DI(p+1) +1 1 - q° +
® q) = (3,3),(5,2) n(q(q?"" - 1) l_Lzl (@' — (1Y) q+1
245(2) {213} n5 )
B, n=2Mm>4,qisodd T 1 . q" +
@ na] | @ -1 .
1 1=
B —P-1 . 37 -1
() 3G +1)| | ) (321 - 1)) >
L 4=
C,.(q) n=2mx>2 T . q"+1
t—1
n(q| - (q 1 ) @, q _11)
Cp(q) q = 213 P [P~ 2i q -
+1 |
n(q(q” +1) Lo (@*-1) 2q- 11)
D,(q p=549g=235 [P~ . q° —
(D | [ @ -1 =
4i=1 1 qp 1
Dy.1(q) q=2,3 1P 20 9 —
14 P+1 -1
2 (q(q® +1) L (@™ -1)) 2.4 _11)
D,.(q) n=2m>4 1, 5 q +
-1
2 n(q| - (q 2 ) @, 7 1)
— Zm 1 > 2 —yn— i n—
D,(2) n +1m=> re@+ [ [ 2%~ 1) 2n1 41
2 5< 2m +1 LA 3P +1
D,(3) <p+# + (3 (3% — 1)) .
i=1
2 — om > —n-2 . n-1
D,3)n=2"+1+pm=2 r3E+ 0| | 1(321_1)) 3 2+1
L 4=
G:(q) 2<q=¢(3)e=+1 n(q(q* - 1)(q° — ©) *-eq+1
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D4 (q) n(q(q® - 1)) q*-q*+1
Fy(q) qisodd n(q(q® - 1)(q° — 1)) q*—q*+1
2F',(2) {2,3,5} 13
Es(q) n(q(@® - D@ -D@?-1) ¢°+a*+1
(3! q-— 1)
2Eq(q) q>2 nq(@®+ D@ -D@?-1) q¢°-¢+1
B3,q9+1)
My, (2,3,5} 11
J2 {2,3,5} 7
Ru {2,3,5,7,13} 29
He {2,3,5,7} 17
McL {2,3,5,7} 11
Co, {2,3,5,7,11,13} 23
Co; {2,3,5,7,11} 23
Fiy, (2,3,5,7,11} 13
Fs {2,3,5,7,11} 19
Table 3. Finite Simple Groups P with t(P) = 3
P Restrictionson P 1.(P) m, ms
A, n>e6, n((n—3)Y) P p—2
n=p,p—2prime
A1(q) 3<q=¢M4), m(q — €) (q) qte
e=+1 2
A.(q) q > 2,qeven {2} q—1 q+1
245(2) (2,3,5} 7 11
P® pm2ialzs m(3(3* 1 -1) 1—[” i (3*¥-1)) ¥ 12+ - 3”;‘ :
i=1
G2(q) q=0(3) n(q(q* - 1)) *-q+1 ?+q+1
2G,(q) q=3""1>3 n(q(q* - 1)) q—+3q+1 q+.3q+1
Fy(q) qeven n(q(q* —1)(q° - 1)) a*-q*+1 q*+1
2F4(q) q=2""1>2 n(q(q® + 1)(q* - 1)) 28 @ +2¢3+q+2q+1
+q-./2q
+1
E;(2) {2,3,5,7,11,13,17,19,31, 43} 73 127
E;(3) {2,3,5,7,11,13,19,37,41,61,7 757 1093
My, (2,3} 5 11
M {2,3,5,7} 11 23
M, {2,3,5,7} 11 23
Js (2,3,5} 17 19
HiS (2,3,5) 7 11
Suz {2,3,5,7} 11 13
Co, {2,3,5,7} 11 23
Fiy; {2,3,5,7,11,13} 17 23
F3 (2,3,5,7,13} 19 31
F, {2,3,5,7,11,13,17,19,23} 31 47

1| =1, so (2" 1+ 1) € T(G) — {m(G)}. This
shows that t(G) > 2. First, suppose that £(G) > 3.
We are going to reach a contradiction under this
assumption. Thus by Lemma 2.4, G is neither a
Frobenius group nor a 2-Frobenius group and

3. Proof of main theorems

3.1. Proof of Theorem A

Let M =2 D, (2), wheren = 2™ + 1 > 5. Assume
that G is a finite group such that |G| = |[M| and
D(G) = D(M). Recall that t(M) = 2 and T(M) =
m(2"* D"+ D - DI 2% -

1))Um(2™ 1 +1). By assumption, |m(2"1+

hence, by Lemma 2.6(ii), there is a normal series
12 H<K=G for G such thaIP=§ is a non-
abdlian finite simple group and every odd order
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component of G is an odd order component of P
and H is anilpotent group. So t(P) = 3 and

21411 € 0C(P)—{m,;(P)}, wheren =
2m4+1>5, (1)

Thus the classification theorem of finite simple
groups and Tables 1 and 3 show that one of the
following possibilities holds for P:

Casel.

P =% A5(2), E;(2), E7(3), My, Ma3, My, J3, HiS, Suz,
C0,,F;, F3,Fiy3, Ay (4), M33,]1,0'N, LyS, Fy,] 4,7 E¢(2), Fi'5.
By (1), (2" + 1) € OC(P) — {my(P)}. Sincen > 5,
27141 >17. Thus considering the odd order
components of the finite simple groups mentioned
above leads to P = J3,Fiy3,2 E¢(2) or Fi'ps. In
these cases, we can see that n = 5 and | P| does not
divide |G| = |>D5(2)|, which isimpossible.

Case2.

P = A, wherep > 6 andp,p — 2 are prime. Then
0c(P) —{my(P)}={pp—2}, so by (),
21+ 1e{p,p-2} If p=2"1+1, then for
every m > 3, the largest power of 2 dividing |4,|
; P P (2" 41 2n141

is (5] + 5]+ ) 1= (F2]+ ] + ) -
1=2"24+2"34+ +2+1-1=2"1-2>n(n-
1).

But |G|, = |M|, = 2™V 50 |P| t |G|, which
isimpossible. If m = 2, thenp = 17, s0 |P| t |G|.
If p—2=2"1+1, then p=2"1+3, s0 the
same argument as above leads us to a contradiction.

Case 3.
P=2D,(3), where p=2™+4+12>5 Then
3P-141 3P41

0C(P) — my(P)} = ——,=}. Thus (1)
shows that either 37~1 — 27 =1 or 37 = 2™*1 +
3.1 3771 — 2" =1, then by Lemma 2.7(i), p = 3
and n = 3, contradiction with assumption on n. If
37 — 3 = 2™*1 then 3|2™*1, which isimpossible.

Case4.

P=A,(q) and 2 < q is even. Then OC(P) —
{m;(P)}={q—1,q+1}. Thus (1) shows that
21 t+1e{q—1,q+1}. If g—1=2"1+1,
then g = 2(2™%2 + 1), s0 q is not a power of 2, a
contradiction. If ¢ + 1 = 2"1 + 1, thenq = 2™ 1.
Set |2l =t o |G| =t/H||P|. Of course by
Lemma 2.6(ii) and Lemma 2.9(i), t|2™, so

n-2

G| |’D,(2 .
= u _ "0 ()] = z(n—l)z(zn +1) l_[ (2% -1).
i=1

t|lH| = =
=P~ Tar (o)l

Thus for every r € R,,(2), r||H|. If S€
Syl,.(H), then the order of S isadivisor of 2™ + 1

and by Lemma 2.8, m,m3|(|S| — 1), which is a
contradiction.

Caseb.

P=A,(q), whee gq=-1(mod4). Then
0C(P) — {my} = {q. 23}, Thus by (1), 2"'+
1e{g™3). If g=2""+1 then gq=
1(mod 4), which is a contradiction. Now we
assume that "2;1 =2"14+1,s0q=2"+3.Since
n=2M+1>5, an easy computation shows that

52" + 3, s0 q is a power of 5, say q = 5/. Thus
q = 1(mod4), whichisa contradiction.

Case6.
P = A,(q), where q = 1(mod 4). Then OC(P) —
{m,(P)} = {q,qTH}. Thus by (1), 2" 1+1¢€

{q,qzll}. First assume that q=2""1+1 and

q = p%, where ¢ > 1. So we have the following
subcases:

() if a>1, then by Lemma 2.7(i), «a =2 and
n = 4, which isnot the case;

(i) if @ = 1, we have ¢ = p = 2™ 1 + 1. Now we
st |2]=1t, 50 |G| = t|H||P|. By Lemma 2.6(ii)
and Lemma 2.9(i), t|2. Thus

n-3
G .
tiH| = :p‘: =20 et - pE? - [ [ @- b,

i=1
so repeating the argument given for Case 4 leads us
to a contradiction.

If £2=27141, then g =2"+1. Asume
that q=p* where a>1. So we have the
following subcases:

(i) if ¢>1, then by Lemma 2.7(i), ¢« =2 and
n = 3, whichisnot the case;
(iifa=1,thenq=p =2"+1 showsthat p is
a Fermat prime, and so n must be a power of 2,
which is a contradiction because n = 2™ + 1 isan
odd prime.

Case?7.

P = G,(q), where g = 0(mod 3) or P =% G,(q),
where q = 32™*1 > 3. If P = G,(q), then the
same reasoning as above shows that g + q + 1 =
2141 or g2 —q+1=2"1+1. But ¢*+
q+1,q¢*—q+1=1(mod3) and 2" 1+1=
2(mod 3) and hence, both cases are ruled out. If
P=2G,(q), then the same reasoning as above leads
to a contradiction.

Case 8.

P =2 F,(q) or P =% B,(q). Then the odd order
components of P is anumber of the form 2f£(2) +
1 such that ged(2,f(2)) =1. If 2if(2)+1=
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2"-1 4 1, then we obtain 2{£(2) = 2™1, which is
a contradiction.

Case9.

P = F,(q), where q is even. Then OC(P) —
mP)}={q*+1,q* —q*+1}, s by (1),
214 1€0CP)—{my}. If 27141 =q*—
q*+1, then 2™1=g42%(g?-1), which is
impossible. If 21 + 1 = g* + 1, then ¢* = 2™1.
If n =5, then |P|, = 22* which does not divide
|G|, = 22°. Thus n > 6 and hence, Zsigmondy’s
Theorem alows us to assume that r is a primitive

prime divisor of 2301

and |G|, we have

— 1, but considering |P|

n-2
3 .
(27(11—1) _ l)lz(n—ﬁ)(n—l)(zn +1) | | (221 _ 1)'

i=1,i%ig,iy

where iy = "T_l i = %(n —1).Thus:

(i) if r|2-D®=6) then r =2, which is a
contradiction;

(i) ifr|(2" + 1), then r|(2%" - 1), so r|(22" -

3 3 3
1) — (22™Y —1). Therefore r|2:® DM 2®D _
3

1), hence r|(22" 2™V 1) implies that 2n—
E(n -1)= E(n —1) and son < 3, contradicting;
(|||) if r|]'[l Lizigi, (221 — 1), then for some j,
1<j<n-2j¢{iyi}, the same argument as
above shows that j>mn-—2, which is a

contradiction.
This showsthat |P| t |G|, which is contradiction.

Case 10.

P = Eg(q). If P = Eg(q) with q = 2,3(mod 5),
then the odd order components of P are q® + q7 —
®-q"—q¢’+q+1,¢°-q" +q°—q* +¢° -
g+1adq®—q°+q*—qg*+1. 1f 2"+ 1=
@®+q9—q°—q*—q®+q+1,then:

()if q =2(mod5), then q®+q” —q° — q* —
q® + q+ 1 = 1(mod5), but 2141 =
2(mod5), which is a contradiction;

(i) if g = 3(mod5), then we get a contradiction in
asimilar manner.

Therefore, 2" 1+1=q®—-q"+q°—q*+
@-q+1 or 2" +1=q®—q°+q*—q* +
1, then the same reasoning as above leads to a
contradiction. If P = Eg(q), where g=
0,1,4(mod 5), then we get a contradiction in a
similar manner.

The above contradictions imply that t(G) = 2, so
m(G) =m;(M) and m,(G) =m,(M). Thus
0C(G) = 0C(M), so the main theorem in [14]
showsthat G = M, as claimed.

3.2. Proof of Theorem B

Let M =2 D,(3), where n=2™+1>9 is not
prime. Assume that G is a finite group such that
|G| = |M| and D(G) = D(M). Recdll that t(M) =
2 ad m(M)=mn(G.3"" D@+ 1)E -

1) ]'[?"Z (32" - 1))Un(3n_1+1). By assumption,

Yl =1, 0 2E) € T(6) - (m,(6)}.
This shows that t(G) 2 2. First suppose that
t(G) = 3. We will reach a contradiction under this
assumption. Thus by Lemma 2.4, G is neither a
Frobenius group nor a 2-Frobenius group and
hence, by Lemma 2.6(ii), there is a normal series

1<H<K=G of G such that P=§ is a non-
abelian finite simple group, H is a nilpotent group
and every odd order component of G is an odd
order component of P. So t(P) > 3 and

3141

€ 0C(P) — {m,(P)}, wheren = 2™ +
1 > 9is not prime. (2

Thus the classification theorem of finite smple
groups and Tables 1 and 3 show that one of the
following possihilities holds for P:

Casel.

P =% A5(2),E7(2),E;(3), M1y, M23, M24,]3, HiS, Suz,

Co,,F3, F3,Fiy3, A;(4), My, )4, )
O'N,Lys, F1,]4,2E6(2) Fi'24 By (2 ¢

0C(P) - (my}, 0 "=
gn-1,4

1> 3281 |mpI|es that

Lis larger than every odd order component of
the above groups.

Case 2.
P = A, , wherep > 6 andp,p — 2 are prime. Then
ocP)—-{m;(P)}={p,p— 2} and hence, by (2),
3n- 1+1 n1liq

e{fpp-2} If p——,

n 2_
%. But p—2 is prime, so 3" 2 -1 =2,

Therefore n = 3, contradiction with assumption on
3n141 1+5

Iargeﬂ power of 3 dividing |4, is [ ]+ El+..>
3n-— 2_

then p—-2 =

n If p-2=

LS nn-1).But|G|s = [M|; = 3"V, s
IPI t1G].

Case3.
P =%*D,(3), where p=2™+1>5 is prime

Then  0C(P) — (my(P)} = £ "+ I

n—1 p—-1
u-%, then p=mn, which is a
contradiction, because assumptlon says that n is not

P _3 =, then 3P +1=2(3""1 +

prime. If
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1). We obtain that 37 = 2.3""1 + 1 = 1(mmod 3),
which is a contradiction. Thus both cases are ruled
out.

Case 4.
P=A,(q) and 2 < q is even. Then OC(P) —
{my(P)}={q—1,q+1}. Thus (2) shows that

3"‘1+1 149

e{q—1,q+1}. If q— 1=2 , then
3" 1+3=2q. S0 3|q, whichis a contradiction.
3141

Therefore, q+1==——, 0 3"1-2¢q=1.

Since q is a power of 2, then by Lemma 2.7(i),
n = 3, which isnot the case.

Case5.
P=A,(q), whee gq=-1(mod4). Then

OC(P) {nu(P)}—{q," 1. Thus by (2),

T e@ Y it g
3" 1+3. But Z(q + 1) = 0(mod8) and
3"1 + 3 = 4(mod 8), which is a contradiction. If

_ n—1
1 _ 37 *1 then g = 3"~1 + 2. This shows that

z -1
q- 1_23 Ly

n(gnT) = {r} and hence q — 1 = 2r'. Assume

q = p* where ¢ > 1 and obviously p > 3, because
q = 1(mod 2) and q = 2(mod 3). So we have
the following subcases:

@) if a>1, then p—1|qg—1, so p—1]2rt.
Hencep — 1|2, which isacontradiction;

(i) if a =1, we have g = p = 3" 1 + 2. Now we
set || =t, 0 |G| = t|H||P|. By Lemma 2.6(ii)
and Lemma 2.9(i), t|2. Thus

1G]
|P|

But by our assumption

3" + 1|t|H| =

so for every r € R,,,(3), r||H|. If S € Syl,.(H),
then the order of § is a divisor of 3" + 1 and by
Lemma 2.8, m,m3|(|S|—1), which is a
contradiction.

Case6.
P = A,(q), where q = 1(mod 4) Then oc(P) —
my(P)} = {q 27}, 0 by (2, Z-"€{q ).

3" 141

First assume that qzll =
we set |§| =t, 0 |G| = t|H||P]|, of course by
Lemma 2.6(ii) and Lemma 2.9(i), £|2™*. Thus
n-2
|G| m-12qn 1_[
1 2i_q
P =230 0@ e[ | @ -1,

This implies that for every r € RZn(S) r||H|. If
S € Syl,.(H), then the order of S is a divisor of
3*+1 and by Lemma 2.8, m,m;|(|S|—1),

,soq=3" 1. Now

t|H| =

3" 141

which is a contradiction. This leads to q =
and q = p%, so by Lemma 2.7(ii), « = 1 and the
same reasoning as above leads to get a
contradiction.

Case?7.

P = G,(q), where g = 0(mod 3) or P =% G,(q),

where q = 32™*1 > 3. If P = G,(q), then the

same reasoning as above shows that g2 + q + 1 =

n-1 n-1

% or ¢ —q+1=""1 But 2¢% +2q +

1,2¢* —2q+1=1(mod3) and 3"l=

0(mod 3) and hence, both cases are ruled out. If
=2G,(q), then the same reasoning as above leads

to get a contradiction.

Case8.
P =2F,(q), whee q=2?"*1>2  Then

OC(P) — {my;(P)} ={q* +/2q3 + q + /2q +
2 3 3141
1,4° - \2¢% +q-/2q + 1}, 0by (2, — €
n—1
0C(P) —fmy). 1t g2y FE 4 g+
V2q+1, then 3n-1 — 24m/+3 4 93m/+3 |
22m/+2 + 2m/+2 + 1. But 3n—1 = O(mod 3) and

24ml+3 + 23mr+3 + 22mr+2 + 2ml+2 +1=

n—1
1(mod3), which is a contradiction. If 3 2+1 =

-2 +q—/2q+1, then we get a

contradiction in asimilar manner.

Case9.
P = F,(q), where q is even. Then OC(P)—

my}={g*+1,q* —g? +1}, o by (2), 2o

oc(P) — fm,(PY). 1t P M=ghyg, then

371 - 2q* = 1. Hence by Lemma 2.7(ii), n = 3,
contraction with our assumption. Therefore

n-1
El 2+1=q4—q2—l—1, so 3" 1 = 2¢q* — 2¢% + 1.

Since q isapower of 2, an easy computation shows
that 2q*—2q%*+1 = 1(mod 3), which is a
contradiction.

€

Case 10.
P =2 B,(q), where q=2*"*1>2  Then

0C(P) - {my} ={q+2q+1,q9—/2q +
1,q-1}, 0 by (2), =€ 0C(P) - {my). If

n—1
37 *1_g—1, then 3"1+3=2q, therefore

2
n—1
3|q, which is a contradiction. If 3 2+1=q+

J2q + 1, then 32™ — 22(mi+1) 4 9 pmi+1 | { gnqd

hence, (32" )%= (2™*1+1)%. Thus 32" =
27+ +1, 50 by Lemma 27(i), m = 2, which is
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impossible.  If - =q—2q+1, then
3n-1=22m+2 _2m+2 4 1 Thus:

(i) if m' is odd, then 1 =371 =22m+2_
2™+2 + 1 = 1(mod5), which is a contradiction;
(i) if m' is even, then 0 =3n1 = 22m+2 _
2™'+2 4+ 1 = 1(mod3), which is a contraction.

Casell.
P = Eg(q). If P = Eg(q) with q = 2,3(mod 5),
then the odd order components of P are q® + q7 —
®-q"-¢’+q+1,¢*-q" +¢°—q* +q* -
n—1
g+1 and g®—qS+q*—q*+1. If 2 2+1=
q®+q" —q° —q* - q® + q + 1, then:
(i) if ¢ = o(mod3), then 2(q® +q” — q° — q* —
q°>+q+1)=2(mod3) and hence, 3" 1 +1=
2(mod3), which is a contradiction;
(i) if g=1,2(mod3), then we get a
contradiction in a similar manner.
n—1
Therefore > =g®—q’+q5—q*+q° —

g+1 or 3n—1+1=q*‘—q‘*+q4—q2+1, then
the same reasoning as above leads to get a
contradiction. If P = Eg(q), where g=
0,1,4(mod 5), then we get a contradiction in a
similar manner.

The above contradictions imply that t(G) = 2, so
m,(G) =m;(M) and m,(G) =m,(M). Thus
0C(G) = 0C(M) and hence, the main theorem in
[15] showsthat G = M, as claimed.
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