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Abstract

We consider the fundamental relation £ on a semihypergroup H to interpret the lower and upper approximations
as subsets of the fundamental semigroup H/£* and we give some results in this connection. Also, we introduce the
notion of a bi-hyperideal to study the relationship between approximations and bi-hyperideals.
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1. Introduction

Hyperstructures, in particular hypergroups, were
introduced in 1934 by a French mathematician,
Marty, at the VIIIth Congress of Scandinavian
Mathematicians [1]. Nowadays hyperstructures are
widely studied from the theoretical point of view
and for their applications to many subjects of pure
and applied mathematics; for example,
semihypergroups are the simplest algebraic
hyperstructures to possess the properties of closure
and associativity. They are very important in the
theory of sequential machines, formal language,
and in certain applications. A comprehensive
review of the theory of hyperstructures appears in
[2-4].

In 1982, Pawlak [5] introduced the concept of a
rough set. This concept is fundamental for the
examination of granularity in knowledge. It is a
concept which has many applications in data
analysis [6-7]. The idea is to approximate a subset
of auniversal set by alower approximation and an
upper approximation in the following manner. A
partition of the universe is given. The lower
approximation is the union of those members of the
partition contained in the given subset and the
upper approximation is the union of those members
of the partition which have a non-empty
intersection with the given subset. It is well-known
that a partition induces an equivalence relation on a
set and vice versa. Since then the subject has been
investigated in many papers, and subsequently the
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algebraic approach to rough sets has been studied
by some authors, for example, Ali, Davvaz and
Shabir [8], Estgji, Hooshmandasl and Davvaz [9],
Iwinski [10], Pomykala and Pomykala [11], Biswas
and Nanda [12], Kuroki [13], Kuroki and Wang
[14], Comer [15], Davvaz [16-18],Y.B. Jan [19],
Kazanci and Davvaz [20] and Xiao and Zhang [21].
In [22-28] Anvariyeh, Mirvakili and Davvaz, Zhan
and X. Ma, Zhan and Tan, Rasouli and Davvaz,
L eoreanu, Kazanci, Yamak and Davvaz applied the
concept of approximation spaces in the theory of
algebraic  hyperstructures. The  fundamental
relations use corresponding classical theory of
algebraic structures. These relations, on the one
hand, connect this theory, in some way with the
corresponding classical theory and on the other
hand, introduce new important classes. In this paper
we consider the fundamental relation f* on a
semihypergroup H to find the lower and upper
approximations for subsets of H as subsets of the
fundamental semigroup H/B*, and obtain basic
properties of this connection.

2. Preliminaries

In this section we recal some definitions and
results of semihypergroups and approximation
theory from [2] and [3], which is necessary for the
development of our paper.

Recall that A hypergroupoid is anon-empty set
H together with a map :H x H - P*(H) where
P*(H) denotes the set of all non-empty subsets of
H. The image of the pair (x,y) is denoted by x - y.
If x e H and A, B are subsets of H, then by A - B,
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A-x and x-B we meand-B= U a-b,

a€AbEB
A-x=A-{x},x-B={x}-BA  hypergroupoid
(H,") is cdled a semihypergroup if associativity
holds, that is (x-y)-z=x-(y-z) for dl
x,y,Z € H.

The motivating example is the following: Let S
be a semigroup and K be any subsemigroup of S.
Then S/K = {xK|x € S} becomes a
semihypergroup where the hyperoperation is
defined in a usual manner x-y ={z|z€Xx -y}
where x = xK. A non-empty subset X of the
semihypergroup H is caled a
subsemihypergroup of Hif X - X € X.

Definition 2.1. Let H be a semihypergroup. A non-
empty subset Iof H is caled a left (resp. right)
hyperideal if H-1<1 (resp. [-H<S ), and a
hyperideal of H if it is both a left and a right
hyperideal of H.

Example2.2. Let H = {1,2,3,4} be a set with the
hyperoperation “ - " defined asfollows:1-1 =2 -
2=3-3=3-4=4-3=4-4={123%1-2=
2:1={1251-3=1-4=3-1=4-1={1,3},
and2-3=2-4=3-2=4-2={23}. Then
(H,") isasemihypergroup such that the set {1,2,3}
isahyperideal of it.

Definition 2.3. Let H and H' be semihypergroups.
A function f: H — H' iscalled ahomomorphism
if it satisfies the condition f(x - y) < f(x) -
f(y); f isastronghomomorphism if f(x - y) =
f(x) - f(y) fordlx,ye€H.

3. Approximationsin semihyper groups

Let 6 be an equivalence relation defined on the
semihypergroup H and 6(x) be the equivaence
class of the relation 6 generated by an element
x € H. Any finite union of equivalence classes of H
iscaled adefinable setin H. Let X be any subset
of H. In genera, X is not a definable set in H.
However, the set X may be approximated by two
definable sets in H. The first one is cdled a
0 — lowerapproximation of X in H, denoted by
O(x) and defined as follows: 6(X)={x¢€
H|6(x) € X}. The second set is caled a 0 —
upperapproximation of X in H, denoted by 6(X)
and defined as follows: 6(X) ={x € H|8(x) N
X # @}. The 6-lower approximation of X in H is
the greatest definable set in H contained in X. The
6-upper approximation of X in H is the least
definable set in H containing X. The difference

o) =6(X)—0(X) is caled the 6-

boundaryregion of X. In the case when 8(X) = ¢
the set X is said to be 6 — exact, otherwise X is
6 — rough.

Let H, and H, be semihypergroups and T be a
strong homomorphism from H, into H,. The
relation T o T~1 is an equivalence relation 8 on H,
(abb if and only if T(a) =T (b)) known as the
kernel of T.

Theorem 3.1. Let H; and H, be semihypergroups
and T be a strong homomorphism from H, into H,.
If X is a non-empty subset of H,; thenT (6(X)) =
T(X).

Proof: Since X € 6(X), it follows that T(X) <
T(8(X)). To see the converse inclusion holds, let y
be any element of T(6(X)). Then there exists an

element x € 8(X) such that T(x) = y. Therefore
there exists a € H; such that a € 6(x) N X, and so
T(a)=T(x) and a € X. Then we obtain y =
T(x) = T(a) € T(X), and 0 T(6(X)) S T(X).

Theorem 3.2. Let 8, 6, be equivalence relations
on asemihypergroup H. If X isanon-empty subset

of H, then (8, N 8,)(X) < 6,(X) N 85(X).

Proof: Note that 6; n 6, is also an equivalence
relation on H. Let a € (6; N 6,)(X). Then (6, N
6,)(@)nX # @, and so there exists x € (6; N
6,)(@)nX. Since (x,a)€H;nH, we have
(x,a) €6, and (x,a) € 0,. Therefore we have
x €60;(a) and x € 0,(a). Since x € X, then
6 (a)NnX+@, and 6,(a)NX #@. Thus a €
0,(X) and a€6,(X). Therefore we obtain
(6, N B,)(X) € 6,(X) N O,(X). This completes the
proof.

Theorem 3.3. Let 8, 6, be equivalence relations
on asemihypergroup H. If X isanon-empty subset

Proof: We havex € (6; N 6,)(X) © (6; N
0,)(x) S X 0,(x) X and 6,(x)CS
Xexed (Xandx € 6,(X) © x €
6,(X) N 62(X).

4. On the Fundamental Relation B*

Throughout this section we le¢ H be a
semihypergroup.

The relation B* is the smallest equivaence
relation on H such that the quotient H/8*, the set of
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all equivalence classes, is a semigroup. 8* is caled
the fundamentalequivalencerelation on H.
This relation is studied by Corsini [2] concerning
hypergroups, see also [4] and [29].

According to [4] if U denotes the set of al the
finite products of elements of H, then a relation
can be defined on H whose transitive closure is the
fundamental relation B*. The relation B is as
follows: for x and y in H we write xBy if and only
if {x,y} € u, for some u € U. We can rewrite the
definition of f* on H as follows: af*b iff there
exist zj,...,Zp41 € H With z;, = a,z,,, = b and
Ug,...,uy, €U such  that  {z,z;,,1} S u(i =
1,...,n).

Suppose fB*(a) is the eguivaence class
containing a € H. Then the product © on H/B* is
defined as follows,8*(a) © B*(b) = {8 (c)|c €
B*(a) - B*(b)}foral a,b € H.

For asubset X © H we define the approximations
of X relative to the fundamental equivalence
relation g* as follows. B*(X) = {x € H|f"(x) S

Xtand B*(X) = {x e H|B*(x) N X + O}.

Since the proof of the following Theorem is
similar to Theorem 2.1 of [13] and Proposition 2.2
of [6], we omit it here.

Theorem 4.1. Let X and Y be non-empty subsets of
H. Then the following hold:

D X) € X < B (X);
2)B*(®) =@ = p*(®) and B*(H) = H = p*(H);

BXVY) =p(X)up(Y);
DX NY)=p"X)NB(Y);
5)X CY implies B*(X) S B*(Y) and B~(X) S

B*(Y);

6)B(X NY) < p*(X) nB~(Y);

B X UY) 2" (X)uU B (Y);
8)L*(X°) = (B*(X))¢, (X¢) isthe complement of X
inH,

NP (X) = (B (X))
10) pr(B*(X)) = B~ (X) = B"(B*(X));
1D ( B~ (X)) = B~ (X) = B~ (B~ (X)).

Proposition 4.2. If X, Y are non-empty subsets of
H,then*(X) - B*(Y) € B*(X - V).

Proof: Suppose z be any element of 8*(X) - B*(Y).
Then zex-y with x € g*(X) and y € g*(Y).
Thus there exist a,b € H such that a € *(x) N X
and bep*(y)nY. Therefore a-bc B*(x)-
By) €SB (x-y). Since a-b< X Y, we have
a-bcf'x-y)Nn(X-Y) and so B*"(x-y)NX-

Y+ @. Therefore for any z€x-y, we have
B*(z2)n (X -Y) # @, which implies z € f*(X - ).
That is x-y € B*(X -Y). Thus we have g*(X) -
Br¥)cp (X Y).

Theorem 4.3. If X is a subsemihypergroup of H,
then 8*(X) is also a subsemihypergroup of H.

Proof: Since X is a subsemihypergroup of H,X -
X € X, then it follows from Theorem 4.1(5) and

Proposition 4.2 thatg*(X)-B*(X) € f*(X - X)
B*(X),This means tha p*(X) is a
subsemihypergroup of H.

Theorem 4.4. If X isahyperidea of H, then *(X)
isalso ahyperideal of H.

Proof: First note that *(H) = H. Let X be aleft
hyperideal of H, that is H-X € X. Then by
Theorem 4.1 and Proposition 4.2, we haveH -
B(X)= B*(H)-p*(X) S p*(H-X)
B*(X).This means that §*(X) is aleft hyperideal of
H. The case of right hyperideal can be seen in a
similar way.

The lower and upper approximations can be
presented in an equivalent form as shown below.
Let X be a non-empty subset of H. Then we

have:g"(X) = {B*(x) € H/B"|B"(x) < X}and
B*(X) ={B"(x) € H/B*|B"(x) N X # B}.

Now, we discuss these sets as subsets of the
fundamental semigroup H/*.

Proposition 4.5. If X and Y are non-empty subsets
of H, thenB*(X)®B*(Y) € B*(X - Y).

Proof: We have
FON0B () = {5 OB () |5 €

00, ') € (D} = (5008 WIF G n
X#@,p*)NY # @ }. Therefore B*(x) -

BNNEX-Y)#@. Since B(x)-p'(y) <
B*(x - y), we abtain B*(x-y)n (X -Y) # @. Thus

B'(x-y) =B (x)OB (y) €B"(X-Y), and so
B*(X)OB*(Y) € B (X - Y).

Corollary 4.6. If X isanon-empty subset of H and
Y isahyperidea of H, then 8*(X)eB*(Y) < B*(Y).

Proof: Since Y is a hyperideal of H, X-Y € H -
YcY. Then by Proposition 4.5, we
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have*(X)OB*(Y) € B*(X-Y) S B*(H-Y) €
B*(¥).

Corollary 4.7. If X and Y are two hyperideals of H,
then g*(X)OB*(Y) & B*(X) n B*(Y).

Proof: Immediately follows from Corollary 4.6.

Proposition 4.8. If X and Y are a right hyperideal
and a left hyperidea of H, respectively, then

Br(X-Y) < B (X)np(Y).

Proof: Suppose 5*(a) € L*(X -Y). Then we have
B (@) N (X-Y)=+@. Since X is aright hyperideal
of HX-YSX-HCS X. ThenB*(a) nX # @, and

s0 B*(a) € B*(X). SinceY isaleft hyperidea of H,
X-YSH-YCY. Then B*(a)nY # @, and so

B*(a) € B*(Y). Therefore B*(a) € B*(X) N B*(Y).
Thismeansthat 8*(X - Y) € B*(X) n B*(Y).

Proposition 4.9. Let X and Y be a right hyperideal
and a left hyperideal of H, respectively,
theng*(X - Y) € B*(X) n B*(Y).

Proof: Suppose g*(a) € B*(X - Y). Then we have

B*(a)c X Y. As in the proof of the above
proposition, we have X-YCS X and X-YCY.
Then B*(a) € X and B*(a) €Y. Thus B*(a) €
B"(X) and B*(a) € B*(Y) and s0 B*(a) € B"(X) N

B*(Y). This means that B*(X-Y) < B (X)N

By a subsemigroup of a semigroup S we mean
a non-empty subset A of S such that AA <€ A, and
by a left(resp. right)ideal of S we mean a non-
empty subset A of S such that SA € A(resp.
AS € A). By an ideal, we mean a non-empty
subset A of a semigroup S which is both aleft and a
right ideal of S (see[30]).

Theorem 4.10. If X is a subsemihypergroup of
(H,"), Then B*(X) isasubsemigroup of (H/B", ®).

Proof: Suppose that g*(a), B*(b) € f*(X), we
show that 8*(a)®B*(b) € H/B*. In fact, we have
B (@) nX # @ andB*(b) N X # @, then there exist
x,y €H suchthat x € f*(a)nX and y € B*(b) N
X. It follows that x € 8*(a),x € X,y € 8*(b) and
y€X.Sox -y < p(a) B*(b) € B*(a-b) =

B*(a)eB*(b).For every z € a- b we have f*(z) =

B*(a)®B*(b). Hence we get x-y S B*(z) and
x-yCSX. Thus, B*(z)NX =+ @, which yields

B (2) € B*(X). Therefore f*(a) OB (b) € B*(X).

Theorem 4.11. If X isahyperideal of H, then
B*(X) isanidea of(H/B*, ®).

Proof: Assumethat X is aleft hyperideal of H. We
show that H/B*®pB*(X) € B*(X). Let *(a) and
B*(b) be any elements of H/B* and B*(X),
respectively. Then g*(b)nX # @, and so there
exists x € H such that x e pg*(b)nX. Thus
x €B*(b) and x € X. Let y be any element of
B*(a). Since X is a left hyperideal of H,y - x <
B'(a)-XSH-XcX. Snce y-x<cf(a)-
B*(b) € B*(a-b) = B (a)OB"(b), we have
y-x € (B (@)®B*(b)) N X. This implies that
B*(a)®B*(b) € B*(X). Therefore H/B*OB*(X) €

B*(X). This means that g*(X) is a left idea of
H/B*. The other case can be seenin asimilar way.

Theorem 4.12. Let X and Y be two hyperideals of
semihypergroup H, and let f: X - Y be a strong
homomorphism, then f induces a

homomorphismF: 8*(X) - g*(Y)by
settingF (8 (x)) = B*(f (x)), Vx € X.

Proof: The proof is similar to the proof of
Proposition 5.5 of [27].

Let H be a semihypergroup with scalar identity.
The kernel of the canonical map ¢:H - H/B* is
called the core of H and is denoted by wy. Here we
also denote by wy the unit element of H/B* (see

[2)).

Definition 4.13. Let X,Y and Z be hyperideals of
H(a semihypergroup with scalar identity). The
seguence of hyperideals and strong

f g
homomorphismsX — Y — Zissaid to be exactif for
everyx € X,

(g °)x) € wy.

f
Theorem 4.14. LetX - Y b Zbe an exact sequence
of hyperideals of H and strong homomorphisms.

Then the sequencef*(X) 5 B*(Y) 5 B*(Z)is an
exact sequence of ideals of H/B*whereF (8*(x)) =

B (f(x)), Vx € X
GB* () =p"(9g) vy €Y.

Proof: By Theorem 4.12, F and G are well-defined
and homomorphisms. Finally, it is enough to show
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that ImF = KerG. We know 8*(wy) = {8*(e)}, S0
we have*(b) € ImF = 3a € H, F(B*(a)) =
B(b) = B*(f(@) =B"(b) = G(B*(f(a)) =
G(B" (b)) = B (g(f(a) = G(B* (b)) =
G(B"(b)) € B*(wu) = B"(g(b)) € B*(wy) =
G(B* (b)) = B*(wu) = B*(e) = p*(b) € KerG
and so ImF < KerG. Conversaly, we can show
KerG € ImF. Therefore ImF = KerG.

5. Approximations in Bi-hyperideals of
Semihyper groups

Let S be a semigroup. A subsemigroup B of S is
caled a bi — ideal of S if BSB < B. The notion of
a bi-ideal was first introduced by Good and Hughes
[31] as early as 1952, and it has been widely
studied. Here we define and study the bi-
hyperideals of semihypergroups and its connections
with approximations.

Definition 5.1. A subsemihypergroup X of a
semihypergroup (H,) is caled a bi — hyperideal
of HiIfX-H-XcX.

Example 5.2. (1)Let H; = {a, b, c,d} be a set. We
define a hyperoperation “ ;" on H; by a-;a =
{b,c} and x-; y ={b,d} for adl (x,y)EHXH
with (x,y) # (a, a), then it iseasy to seethat {b, d}
isabi-hyperideal of H,.

(2)Let H, = ({a,b,c},,) be a semihypergroup,
where a,a=a,b=a,c=b-y,a=ca=
aandb-,b=b-y,c=c,b=c,c=>b.Thenit
is not difficult to see that the sets {a} and {a, b} are
bi-hyperideals of H,.

Theorem 5.3. Every left (resp. right) hyperideal X
of asemihypergroup H is abi-hyperideal of it.

Proof: Firss we show tha X is a
subsemihypergroup of H. Since X is a left (resp.
right) hyperideal of H, wehave X - X CH-XCc X
(rep. X-XSX-HcSX). Then X is a
subsemihypergroup of H. NowX -H - X = (X - H) -
XSX-XSX (rep. X-H-X=X-(H-X)SX-
X <€ X);This completes the proof.

The following example shows that the converse
of Theorem 5.3 isnot true.

Example 54.(1)Let H={a,b} be a
semihypergroup with hyperoperation defined as
follows. a-a=b-a=a and a-b=b-b=
{a, b}. Then (H,-) is a semihypergroup such that the
set {a} is a bi-hyperideal of H, but it is not a right
hyperideal ofH.

(2) Let H' = ({x,y},°) be a semihypergroup,
wherexox =x,xoy={x,y}andyox =yoy =

y. Then it is not difficult to see that the set {y} isa
bi-hyperideal of H, but it is not a left hyperideal of
H.

Theorem 55. Let {X,}.e; be a family of bi-
hyperideals of H. Then N,¢; X, IS a bi-hyperideal
ofHifNyes Xo # 9.

Proof: It is straightforward.

Theorem 5.6. Let X be a bi-hyperideal of H, then
B*(X) isalso abi-hyperideal ofH.

Proof: Let X be a hi-hyperidea of H, that is
X -H-XcX. Note that by Theorem 4.1(2),

B*(H) = H. Then by Theorem 4.1 and Proposition
4.2, we havef*(X)-H-B*(X) =p*(X)-B*(H) -
BrX)cp*(X-H-X)<c p*(X).From this and
Theorem 4.3, we obtain that g*(X) is a bi-
hyperideal of H.

Theorem 5.7. Let X be a bi-hyperideal of H, then
B*(X) isabi-idea of(H/B*,©).

Proof: Let B*(x) and B*(z) be any elements of

B*(X), and B*(y) be any element of H/B*. Then
B(x)NX+0, and B*(z2) N X # @, and so there
exis a,c€H such that aepf*(x)nX and
ceEP(2)NX. Thus a € B*(x),a € X, ceB*(2)
and c € X. Let b be any element of 8*(y). Then,
since X is a bi-hyperideal of H, a-b-c<S X -
B'(y)-XS€X-H-X<CX, and since a-b-cC
Br(x)-B*() B (@B (x-y-2)=p(x)O

B() ©B"(2), we have B"(x)OB YO
B'(z)NnX+@. This implies tha Bg*(x)©®
B*(y) © B*(z) € B*(X). From this and Theorem

4.10, we have §*(X) isbi-ideal of H/S*.

6. Conclusion

The theory of rough sets is regarded as a
generalization of the classical sets theory. In the
present paper, we substituted a universe set by a
semihypergroup H and consider the fundamental
relation f* on H to find the lower and upper
approximations for subsets of H as subsets of the
fundamental semigroup H/B* and obtain basic
properties of this connection. We also introduce and
study the bi-hyperideals of semihypergroups and its
connections with approximations. Our future work
on this topic will be focused on the properties of
fuzzy rough sets and rough fuzzy sets with respect
to semihypergroups and then with the study of
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fuzzy rough (bi-)hyperideals and rough fuzzy (bi-)
hyperideal s of a semihypergroup.
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