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Abstract

This paper is concerned with global analysis of a delay SVEIR epidemiological model in a population of varying
size. By using Lyapunov stability method and LaSalle’s invariance principle for delay systems, we prove that
when there is no endemic equilibrium, the disease free equilibrium is globally asymptotically stable, otherwise the

endemic equilibrium is globally stable.
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1. Introduction

Compartmental models for infectious diseases
separate a population into various classes based on
the stages of infection [1]. Most of the authors
assume that the latent period of diseases is
negligible, i.e. once infected, each susceptible
individual (S) instantaneously becomes infectious
(I), and later recovers (R) with a permanent or
temporary acquired immunity. These epidemic
models are customarily called SIR (susceptible,
infectious, recovered) models, [2-5]. Actually,
vaccination is the most common method to control
the spread of diseases. There are two different ways
to consider vaccination in epidemiological models
based on two different strategies, continuous
vaccination and pulse vaccination. It is known that
for some diseases, such as influenza and
tuberculosis, on adequate contact with an infectious
individual, a susceptible becomes exposed for a
while; that is, infected but not yet infectious. Thus it
is realistic to introduce a latent compartment
(usually denoted by E) leading to an SEIR and
SVEIR model [4, 6-9]. Such type of models, with
or without time delays, has been widely discussed
in recent decades. Local and global stability
analysis of the disease-free and endemic equilibria
have been carried out using different assumptions,
contact rates and sometimes by introducing
reproduction number Ry, (see [4-14]).
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For instance, for an SVEIR model with pulse
vaccination, the global behavior of an ‘infection-
free’ equilibrium when Ry < 1, and the
permanence of the disease when Ry > 1 have
been proved in [8]. Recently, Wang et al. [13] have
shown that the global stability of disease-free and
endemic equilibria is governed by the basic
reproduction number.

Motivated by the models in [8] and [13], we
consider a delay SVEIR epidemiological model
with continuous vaccination in a varying
population. We assume that both susceptible and
vaccinated individuals are capable of being infected
through a mass action contact with infectious
individuals. Actually, each time only susceptible
and vaccinated individuals that have had contacted
with infectious individuals 7 time units ago,
become infectious, provided that they have
survived the period of T units, as in [8]. Our
vaccination model is suitable for the diseases with
partial immunity just after the vaccination. As soon
as the susceptible individuals enter the vaccination
process, they are different from susceptible and
recovered individuals. When the vaccinees gain
complete immunity, they would enter the recovered
group. We prove that for our model the disease-free
equilibrium is globally stable when Ry < 1, and
there is a unique endemic equilibrium, which is
globally stable, when R > 1. The rest of the
paper is organized as follows. In the next section,
SVEIR epidemic model and its reduction to an SVI
model are introduced. The existence of disease-free
and endemic equilibria and the basic reproduction
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number R, are presented in section 3. Moreover,
local stability of disease-free equilibrium and also
global behavior of disease-free and endemic
equilibria by constructing suitable Lynapunov
functional are analyzed in this section. Finally, we
show that similar results are valid for general
model. In section 4, we provide some numerical
simulations of the system.

2. SVEIR epidemic model and preliminary
information

In this section we introduce an SVEIR [4, 8]
epidemic model with time delay. The population is
divided into five groups: susceptible (those who are
capable of contracting the disease); vaccinated
(those who receive vaccination to defeat disease);
exposed (those who are infected but not yet
infectious); infectious (those who are infected and
capable of transmitting the disease); and recovered
(those who are permanently immune), denoted by
S(t),V(t),E(t), I(t), and R(t) respectively. We
introduce the following model in which all the
parameters are assumed to be nonnegative:

S =b—ds(t) - BSMIE) —yS(b),
V =yS@) = BV (OI(E) — dV (L) — aV (t),
E = BS(OI(L) + BV (DI (L)
—Be #S(t —)I(t — 1)
—Be MV (t — T)I(t — 1) — UE(L),
[=pe *S(t—1)(t—T1)
+ e MVt -1t —1)
) —(61 + 6)1(),
R =aV(t) + 6,1(t) — dR(t). €))

The following parameters have been considered
in the above system:
(1) b,d, p and 3§, are respectively per capita rate of
birth, natural death, total death for exposed and
infectious individuals including natural death and
the disease induced mortality.
(i) Let y be the rate for susceptibles who receive
vaccination.
(iii) Let S be the transmission rate of disease when
susceptible individuals contact with infected
individuals. The vaccinated contact with infected
individuals before obtaining immunity has the
possibility of infection with a disease transmission
rate fB;.
(iv) The recovery rate of infected the individual is
61. The recovered individuals are assumed to have
immunity (so called natural immunity) against the
disease.
(v) Let a be the average rate for vaccinated to
obtain immunity and move into recovered
population.
(vi) T is a nonnegative constant and shows the time
delay.

The time delay is introduced in the system as
follows. At time t only susceptible and vaccinated
individuals that have contact with infected
individuals T time units ago, that is at time - T,
become infectious, provided that they have
survived the incubation period of T units, given that
they were alive at time t — t when they had
contact with infected individuals. Thus the
incidence of newly infected individuals is given by
the mass action term e M'S(t — DI(t —
T) and Be MV (t — DI(t- 1), [11, 15].

A special case of the above model (b = d = p
and ¥y = 0) has been investigated in [8]. The
existence and global behavior of the ‘infection-free’
equilibrium and the permanence of the disease in
the presence of the endemic equilibrium are
analyzed. Here we give a complete global analysis
of the above general model. In order to analyze (1)
we reduce it to a three dimensional system. Since
the equations for E and R are independent of other
equations, we can rewrite the equations as follows:

S=b—(d+y)S®) — BSWI),

V=yS(t) - BV (OI®) — (d + )V (D),

I =Be ™St —0I({t—1)+ Pe *V(t -

It —1) — 61(t), 2

where 6 = 6; + §,.
The initial conditions of (2) are given by

S(0) = 91(0),V(8) = 92(6),1(6) = ¢3(F),-1<0<0,

where @ = (@1, 95, 93)T € C, such that ¢;(8) >
0(=1,23), forall -t < 0 < 0, and C is the
Banach space C([—1,0],R3) of continuous
functions, and ||¢|| denotes the norm on C and is
defined by

llell = sup{l@1(®) .19 2(0) ]| ¢ 3(0) [}
—-T1<6<0

From the first equation of (2), we obtain § < b —
(d + y)S. Hence, limsup;_,,, S(t) < dLer' Moreover,
from the second equation of (.2), we obtain S + V <
b—d(S+V). Thus, limsup, (S + V)(£) < =
Since eTM St -1 +VEt—-1)+I1t) <b -
dle ™St —1) +V(Et —1) +I(t)), we can
say Limsup;_,. e *'(S(t — 1) + V(t — 1)) +
I(t) < S. Since S(t) and V(t) are bounded we conclude
that I(t) is bounded as well.

Moreover, the following set is positively invariant
for the system (2),

0 = {(@1(t), 2(t), 93()) | 0 < ¢1(0) Sdeya
0<p;(0) +9,(0) <=,

b
0= e (@1(=1) + 92 (-1) +95(0)) =3
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3. The Equilibrium Points

In delay differential equations the equilibrium
points are constant functions. The equilibrium
points of (2) are the solutions of the system:

b — (d +y)S() — BS@OIE) = 0,
yS(t) = BV(O)I(t) — (d + )V (t) = 0,
e MSt-DIt-1)+Bre V(- DIt— 1)

—38I(t) = 0. 3)
It is easy to check that the disease-free
equilibrium (DFE) isP, = (——,—2—,0).

(a+y)’ (d+a)(d+y)’
Also, we can derive endemic equilibria of the
system (2), P* = (S*,V*,I"), from the two first
equations of (3):

. _ b . _ by
§t= d+BI*+y &V* = (d+B1I* +a) (d+BI*+y) )

We put the above relations in the third equation
of (3), which leads to:

—ut
Be d+pI*+vy

by
+ pre™H"

(d+ B +a)(d+BI"+7) -0=0

and rewrite it as,

—SB BRI + (Bfe b~ §(dB + dp,
+ YBr + ap) I
+e Mh(Bd + yBy + af)
—8(d+a)(d + ) = 0. (5)

The coefficients of the above quadratic equation
are denoted by:

ag = —6B1B,

by =be BB, — 6(dB + d B+ vB1 + ap),
co = be ™ (Bd + yB; + aff) — 5(d +

a)d + v). (6)

In order to determine the existence of endemic
equilibria in the phase space, we should discuss the
sign of ¢y and by. By considering ¢, let us define
the basic reproduction number R, as follows:

_ beTHT(Batypi+ap)
Ro = s(d+a)(d+y) ™

which is known as the number of secondary
infections produced by one primary infection in a
wholly susceptible population. The existence of
endemic equilibrium is determined by the basic
reproduction number as the following proposition
[13].

Proposition 3.1. If Ry < 1, then the DFE is the
only equilibrium of the system. When R, > 1, the
system has a unique endemic equilibrium.

Proof: The condition R, < 1, is equivalent to

In order to determine the sign of — ? , let us define
0
R, by

R — be BB,
L7 8(dB + dBy + By + aB)

According to the definition of Ry and R;, we have

(Bd +yBi + aB)(dB + dB, +yBi + aB)

fo =t TACESDICETS
=R (GE+ D+ . ®)

Since all parameters are positive, it provides that

d+a | vy, B1 B ; i i
(E + E)(m + d—ﬂ/) > 1, which implies R o >
RI.

Now assume that R, < 1. According to the
above relation, R ; < 1 which is equivalent to

- :—0 < 0, hence (5) has no positive root. When RO
0
=1, we have ;—0 =0and R; < 1, hence (5) has one
0

zero and one negative roots. All in all, we found
that when R, < 1 there is no endemic equilibrium,
and the DFE is the only equilibrium of the system.
When R, > 1, it is equivalent to :—Z < 0. Thus (5)

has two roots; one positive and one negative. Since
only positive equilibria are meaningful in our
system, we conclude that the system has a unique
endemic equilibrium when R, > 1.

3.1. The Sability of the DFE

In this section we show that the basic
reproduction number, R,, governs the stability of
Py. First, in Theorem 3.1, we prove local stability of
DFE and then in Theorem 3.2 by introducing a
Lyapunov functional, the global stability of P, is
shown when Ry < 1.

Theorem 3.1. The DFE is locally asymptotically
stable if Ry < 1 and it is unstable ifR 5 > 1.

Proof: We apply linear stability technique for delay
differential equations [16]. The characteristic
equation of the system at P, is of the following
form:

A+d+ )@+ d+ y)(Be WISt — 1)
+Be= WY (£ — 1) — (8 + A)) = 0. (9)

Since the roots of the first two phrases are
negative, in order to study the stability of P, we
should determine the roots of the third phrase:
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ﬁe_(”‘L’DTS(t -7 + Ble—(uwl)rv(t )
-(@+1n=0.

We can multiply the above equation by T and let
x = —At, the result is:

S LE Sy W A S Sy
d+y) (d+a)

Rewrite it as x — ge* + p = 0 where p =
_ The™HT
—d6tand q = @@ ((d + o) + Biy).
Hayes in [17] showed that all roots of the equation
x —qe* +p =0, where p andq are real
numbers, have negative real parts if and only if

p<1and p<gq <+a?+p?,where a, is a
rootof a = p(tan(a)),o < a < m. Since =6 <

be KT
+ @@ ((d+a)p +
Biy) = 6(Ry—1) < 0, thus P, is locally stable if
R 3 < 1, and unstable if R, > 1.
Now we prove the global asymptotic stability of
the DFE using a Lyapunov functional, and

Lyapunov-LaSalle theorem.

0 and p—q = =06

Theorem (Lyapunov-LaSalle). If V is a Lyapunov
functional on G and x,(® ) is a bounded solution of
a delay differential equation that stays in G, then
x:(®) converges to the maximal invariant set in
{ eClG: V(@) =0} as t — +oo. The
following result indicates that the disease dies out
in the host population if R, < 1.

Theorem 3.2. The DFE is globally asymptotically
stable, if Ry < 1.

Proof: For all € > 0, let Q. = {(¢1(t), @2(t), @3(D)) :
@1(0) < fy + €}. Since § < 0, the o—limit set of any
orbit lies in €, and since ¢ is arbitrary, it lies in Q.
Therefore, we should focus on the dynamics of (.
We should notice that the solutions in gy are
bounded, because S* + V' + I is bounded in Q.
We consider the following Lyapunov functional in
Qp:

) = I(t) +Be [_S@E) I(H)dt +
Bie™ [ V(® I(Ddt. (10)

One can check that,

¢ = I(t)(Be *"S(t) + B1e V() — &).
b
d+y
second equation of (2), which gives V <

by
@@ Therefore, when R, < 1for the

solutions in £y we have

Since § < in g, we can apply this to the

b <I® (Be“” e 5)
d+y d+a)d+y)

=I5(Ry — 1) < 0.

By Lyapunov-LaSalle asymptotic stability
Theorem (see Hale [16] and Kuang [18]) it remains
to find the maximal invariant set in {¢p = 0},
which in this case is equivalent to @3(0) = 0. In
addition, notice that the points in maximal invariant
set should satisfy ¢@3(—7) = 0. Therefore, in Q,
the system becomes:

S=b — ds(t)— yS(v),
V=1ySt) — dv(t) — aV(t). (11)

By applying the Bendixson criteria we conclude
that the system does not have any limit cycle.
Hence, according to the Poincare’-Bendixson
Theorem, all solutions tend to the unique
equilibrium of the system that is P,. In addition, for
M= {®deQ:d = 0}, we have M S Q, and
the largest invariant set in M is {Pg}.

Now, when Ry =1,¢ = 0is equivalent to
@3(0) =0 or Be ™ #'S(t) + f1e7*V(t)—8=0.
Since pe #'S(t) + B1e™*V(t) —F < 6(Ry —

b

1) = 0, the equality occurs when ¢, = e

__br
(d+a)(d+y) .' )
set should satisfy§S = Oand V = 0. In this

situation, by considering the first equation of (3),

and @, = Thus, the points in invariant

we conclude that I(t) = 0, wheng, = d%y.

Therefore, when Ry = 1 the maximal invariant set
is again M. Therefore, by applying Lyapunov-
LaSalle asymptotic stability theorem, Py is globally
stable.

3.2. Global stability of the endemic point

The stability analysis of the endemic equilibria is
more challenging, and many authors examine it
through numerical simulation, [5, 8]. In this section,
we will establish the global stability of the endemic
equilibrium.

Before introducing the Lyapunov functional we
need to define the function h(x) = x — 1 — In(x),
for x(t) > 0. We can see that it is a non-negative
function, and h(x) =0 if and only if, x =1.

Moreover, note that S*h(s(ts—jﬂ) > 0, V*h(@) >

0 and I*h('ﬁ—f)) > 0. From now on we will use
ST, V* and I* instead of S(t — 1), V(t — 1), I(t —
7).

Theorem 33. If Ry > 1, then the endemic
equilibrium, P*, is globally asymptotically stable.

Proof: We define a Lyapunov functional for P* by
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U = U1 + Uz, (12)
where
U, = S*h(sr)+V*h(Vr) + el I'h (’ (”)
1= s* V* I~ )
£l £3 * ok I
U, = (BSI* + BV'I )ff_rh(%) dt. (13)

The time derivative of Uy along the solution of
system (3) satisfies:

. 5"
Uy=b — dS* — BS'I" — yS* — b+ dS* + BI'S’

K

14
TS+ ST = BV — dVT — aVt - ST
+BIV* + dV* + aV* + BSTIT + By V'

I I
— FTSI t)- STIT VTI‘L' I urSI*

+v8 (3-% - )
- s ST
+BS1 ( _F_s*z(t))
* * * JT *JT
+ BV T G = ) + BS'T + BVl
+ BS*I(t) — BLV*I(L). (14)
Similarly the time derivative of U, along the
solution of system (3) satisfies:

U, =BSI(t) — BS'I* — BS’'I" ln(Q)

+ ST In("2
+ B VL) — B VT
— BV'I*In (’(”) + B VT 1n( ). (3

Combining 14 and 15, we obtain:

*

U—dS*(Z 3 ST)+dV*( S VT)
B 5T s

BV (1 N V*I(t) S+In (VVIIZ)))
+BST (1 - S*l(t) ( S*TIZ)))
o (s 5 ()
Cr (it on®)

By inequality of arithmetic and geometric means,
it is clear that
2————<0and3—§—;—ir—;—z*30. (16)

Recall that h(x) = 0 forx > 0 and h(x) =
if and only if, x = 0, therefore, U < 0 and the
equality occurs when @1 = §,¢, =V and
@3(0) = @3 (—1). By applying Lyapunov-LaSalle
asymptotic stability Theorem (see Hale [16] and

Kuang [18]), solutions tend to the largest invariant
subset of M = {U = 0}. From the third equation
of (2), we can say that in all points of M, I satisfies:

I = Be ™™ S'I* +Be™** V'IF— 8IF =0

It implies that ¢3 is a constant function in M.
Since § = 0 for each point of M, we obtain
that I(t) = I" for all t, hence we have M =
{(§7,V*,I")}. Now since the solutions are bounded
in 6, by the LaSalle’s invariant principle, the global
asymptotic stability of P* follows.

3.3. Dynamics of general model

The above analysis resolves the global stability of
the system (2), which is a subsystem of (1). Now
we show that the above mentioned results are valid
for the original system (1) too. Both E(t) and R(t)
satisfy equations of the following form

x = f(t) — ax.

It is easy to see that iflim, ., f(t) = M, then
. M
lim,, x(t) = —
Now consider the equation for exposed and
recovered individuals

E'=BSI(t) + BV(OI(t) — Be ™ S(t
- I(t — 1)
—B1e7V(t — DIt — 1) — pE(L),
R=aV(t)+ 6;I(t) — dR(t).

When R, > 1, by Theorem 3.3, we know that
I(t) and I(t — 7),8(t) and S(t — ), and V(1)
and V(t — t) converge to positive constants I, §*
and V*, respectively. Thus

1
limE()) = E* = LBA-etsT

+(1—e ™MB V1),
1
lim R(t) =R = E(aV* + 6,I").

When Ry, < 1, similar argument leads to
gim E(t) = 0 andlim,_ . R(t) =aTV°. Therefore,

the following theorem has been proved.

Theorem 3.4. (i) When Ry <
system (1) is globally stable.
(i) When Ry > 1, the endemic equilibrium of the
system (1) is globally asymptotically stable.

1, the DFE of the

4. Conclusion and some numerical simulation

Throughout this paper, we considered an SVEIR
epidemic model with time delay and obtained
global stability results in terms of the basic
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reproduction number, Ry. More specifically, when
Ry < 1, the disease will die out, and when
R, > 1, the endemic equilibrium of the system is
globally asymptotically stable, and the disease will
always exist.

In this section, we provide some numerical
simulations of the system to visualize the
dynamical behavior of the model. In Fig. 1, the
parameters are chosen such that R, < 1. Hence P,
is globally stable, and the disease extinct, (Ry =
0.52). In Fig. 2, the parameters are chosen such
that Ry > 1. Hence P*is globally stable and the
disease persists, (Rg = 1.32).

----- ST

WT)

l — W T)
-===ET)

R(T)

VALUES OF S(T), VT),(T).E(T) and R(T)

3 ]
TIMET

Fig. 1. Movement paths of S V; |; E and R as functions
of time t. Here, b=1.2, # =105 ,=1.2, pu=
1.015, y= 0.5,7=0.2, a =0.3 and §; = 0.55

—
WIT)
Ty
e ET)

R(T)

3

VALUES OF S(T), V(T),(T).E(T) and R(T)

6
TIME T

Fig. 2. Movement paths of S; V; I; E and R as functions
of time t. Here, b=1.5 =15 8,= 1.2 pu=
0.0015, 6 =1.5115,d=1, y=0.1t=0.2, a =
0.3 and §; = 0.55

In Fig. 3 the parameters are chosen such that
Ry, = 1. Hence P, is globally stable and the
disease extinct. The basic reproduction number also
governs the convergence rate of the solutions to the
DFE, when Ry < 1. More specifically, the closer
R, to one, the slower the extinction of the disease.
Thus, it is more efficient to decrease R, for a short
time, in order to decrease the number of infected
individuals more rapidly. To illustrate let b =

2, =10, p1 =8, p = 1.5,6 = 2.55,
d=11=05 a=415 and 61 = 0.5,
and y be the control parameter. Wheny = 8 the
basic reproduction number is RO = 0.92, and the
graph of I(t) is depicted in Fig. 4. Now we assume
that y varies as follows

..... =T
WIT)

-——E(T)
RIT).

3
4

)

o
>

VALUES OF S(T), V(T)\(T),E(T) and R(T)

0
TIMET

Fig. 3. Movement paths of S; V; I; E and R as functions
of time t. Here, b=1.5, B = 1.5345, 3, =1.2, pn=
0.615, 8 =1.765,d=1, y=0.5, t=0.2, a =
0.3, and 8§; = 0.55

3

KTy

)

VALUES OF I(T)

0 5 10 15 20 F-]
TIMET

Fig. 4. Movement path of | as a function of time t.
Here, b=2, =10, ; =8, u=1.5 6§ = 2.55,
d=1,y=8 1=0.5 a=4.15andé; = 0.5

y = —20000(t—0.501| — [t—0.5| + [t—7|
— |t—7.001]) +8.

Figure 5 shows that the disease eliminates about
three times faster when y varies as above, in
comparison with the case ¥ = 8. The movement
path of y is depicted in Fig. 6. According to the
definition of y as a function of time, for 5.001 <
t < 7,wehavey = 48and R, = 0.63.

Figure 4, shows that when y = 8 the disease
becomes extinct at about 20. In comparison, Fig. 5
shows that when y varies, the disease becomes
extinct at about 8.
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VALUES OF I(T)

0s

o 1 2 3 4 5 6 T 8 ®

TIMET

Fig. 5. Movement path of | as a function of time t. Here,
b=2 =106, =8 u =158 =
2.55,d =1, 7t =0.5a=415andd; = 0.5

=0

45

40

g 8

VALUES OF {t)

4 3
TIMET

Fig. 6. Movement path of y as a function of time t
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