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Abstract

The purpose of this paper is the generalization of structure factor for rods by polygon section in two dimensional
phononic crystals. If we use the plane wave expansion method (PWE) for the propagation of acoustic waves in 2D
phononic crystals, structure factor will be an important quantity. In order to confirm the obtained relations, we
have calculated the band structure for XY and Z vibration modes in 2D phononic crystals and the propagation of
bulk acoustic waves (BAW) are considered. In addition, the effect of sides’ number on the band structure and the
complete band gaps width are investigated. Phononic crystals studied in this paper are composites medium of a
square lattice consisting of parallel nickel rods embedded in epoxy. The frequency is calculated by PWE in the
condition of elastic rigidity to the solid inclusions. The results showed that, when the section of rods have 2n+2 (n
is even) and 2n+1(n € N) by increasing sides number of the rod sections, the bands of XY mode shift to lower-
frequency, the bands are smoother and the width of the band gap increases, but the band of Z mode has not
changed by n variations. Moreover, when the section of rods have 2n+2 (n is odd) by increasing sides number of
rod sections, the band structure of XY mode changes slightly and the width of the complete band gap is decreased.
This confirms the effect of lattice symmetry on the complete band gap width. But, the band structure of Z mode

has not changed.
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1. Introduction

Elastic wave propagation in periodic structures has
been the subject of intensive researches and it has
received a great deal of attention during the past
two decades [1-7]. These periodic structures,
phononic crystals, are also called the elastic band
gap (EBG) materials. These inhomogeneous elastic
media are composed of one [8, 9], two [1, 10, 11],
or three [12, 13] dimensional periodic arrays of
inclusions embedded in a matrix. Due to their
periodic structure, these materials may exhibit
under certain conditions, absolute acoustic band
gaps, i.e. forbidden bands which are independent of
the propagation direction of the incident elastic
wave. Because of this property, these structures
have extensive practical applications, for instance,
in the construction of sound shields and filters [14-
19], in the refractive devices such as sound-wave
focusing acoustic lenses [20, 21]. Also, they are
used in the selective frequency waveguides [22]. In
view of these applications, it is important to know
how to design structures with the phononic gap as
wide as possible. Besides the physical properties of
the PC crystal component materials, the phononic
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gap width is found to depend strongly on the lattice
symmetry, as well on the scatter shape [23, 24].

The phononic crystal solid/solid materials in two-
dimensional are composed of periodic arrays of
rods inclusions, under the assumption of wave
propagation in the plane perpendicular to the axis
rods. In this case, the vibration modes decouple in
the mixed-polarization modes (XY) with the elastic
displacement u perpendicular to the rod axes and in
the transverse modes (Z) with u parallel to the
inclusions. To reveal wide acoustic band gaps, we
first require a large contrast in physical properties,
such as density and speed of sound, between the
inclusions and the matrix, next, a sufficient filling
factor of inclusions [25].

In this paper, we generalize structure factor for
rods by polygon section in two-dimensional
phononic crystals. Also, the wave propagation of
bulk acoustic is studied in square array of Nickel
rods with polygon section embedded in epoxy. We
reviewed formulation of plane wave method for
elastic waves propagating in two-dimensional
phononic crystal. Moreover, we calculate the band
gap for XY and Z vibration modes, and the effect of
sides number on the band structure and band gaps
are investigated.
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2. Theory

The behavior of elastic waves propagating in a solid
can be described by equation of motion, and can be
obtained by considering the stresses acting on a
volume element. Application of Newton’s laws
gives,
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Here p, u;, T;, and r, are mass density, component

of displacement vector, component of stress tensor

and the position vector, respectively. The

component of stress tensor is given as:

Tij = Ykt CijkiUi- (2

Here ¢ is elastic stiffness tensor. By
considering the eigenfrequencies and normal mode,
equation (1) may be written as [26],

[pwi&-l - Cijlkkkkj]el(k) =0. 3)

Here wy, is eigenfrequency for wave vector k. By
using Voiget notation and cubic symmetry, we have
three elastic constants c;q, ¢, and cuy. Due to the
spatial periodicity of the phononic structure, the
material constant p(r) and c;j;(r) are periodic
functions of the position. It means that p and C are
functions of the coordinates x and y where the z
axis defines the direction of the rod axis. Then we
can expand in the Fourier series with respect to
two-dimensional reciprocal lattice vector

p(r) = X p(G) exp(iG.T), 4
and
Cj;(r) = 26 C;j(G)exp(iG. ). (%)

Where r is the position vector of components x
and y and G= (G,, G,) are the reciprocal lattice
vectors in the xoy plane. The Fourier coefficients
p(G) and C;;(G) take the forms

p(G) = [f d?r p(r) exp(—iG.1), (©)
and
C5(G) = 5 JJ d?r Cy(r) exp(—iG.T). @)

The structure factor is defined as follows:
Fg = %ff d? rexp(—iG.r), (8)

here A is Unit cell area. If one of the denominators
of F¢ goes to zero, Eq. (4) and (5) will give the
average density and elastic constant

pc =p =pAf+p%(1 -0, ©)
and

Otherwise, Eq. (4) and (5) may be written as

pe = (p" — p®)Fg (11
and
CijG = (CijA - Ci]'B)FG. (12)

Where f is filling fractions and mass density p#
and the elastic constants Ci]-A are considered inside
the rods and p® and Ci]-B in the background.

The structure factor for polygon section of filled
inclusion will be as follows:

i) For polygons, in which the number of sides is
2n+1 (n € N)

4 sin(rGysin20)sin(rG, cos26)
Fo = a%GxG, *

i ?zl{(Gy_ZTGX) [cos (Gy sin (iZ+ (i - 1)0) -

Gycos (ig— (i— 1)9)) + cos (Gycos(i +1) (g + 9) -
Gysin(i +1) (2 - 0)) r| + m [cos (Gy sin (12 +

(i— 1)0) + Gycos (zg —(i- 1)9)) r — cos (Gycos(i +

1) (Z+6) + GysinGi + 1) (2~ 9)) r]} (13)

Where,

cosi5-(-06]ssinf(i+1)(5-6)

. = - '_1
m; = (1) sinliz+(i~1)6]~cos[(i+1)(5+0))]

(14)

In the above sum, if i+1>n, it will take i+1=n.
ii) For polygons in which the number of sides is
2n+2 (n is even)

4 sin(rGysin26)sin(rG, cos26)
¢~ a%GyG *
XYy
1 /2 2 .
e s {m [—cos (Gycos(m +
(i — 1)8) — Gysin(in + (i — 1)9)) r+
cos (Gycos((i + 1)(m — 0)) — Gysin((i +
2
1)(1-[ - 9))) T'] + (Gy+mti)
(i — 1)8) + Gysin(im + (i — 1)9)) r—
cos (Gycos((i + 1)(m — 0)) + Gysin((i +

[cos (Gycos(in +

1)(n—9))) r]} (15)
Where,
m; = (_1)1'—1 sin[in+(i—1)0]+sin[(i+1)(7—6)] (16)

cos[im+(i—1)8]—cos[(i+1)(m—6)]
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iii) For polygons in which the number of sides is
2n+2 (n is odd)

_ 4 sin(rGysin26)sin(rGycos20) N
“@ a2GxG,

1 yn-1)/2 2 — i —
pETR Yict {(Gy—miax) [ cos (Gycos ((21

DE+ 9)) — Gysin ((Zi ~DE+ 9))>r +

cos (Gysin ((n - 2i)(§ + 0)) — Gyxcos ((n —
20) G + 9))) r] + m [cos (Gysin (i g +
(i — 1)9) + Gycos (zg + (- 1)0)) r—

cos (Gysin ((n - 2i)(§ + 0)) + Gxcos ((n —

20) (§+ 9))) r]} (17)

Where

_ sin|2i-D)G+6)|+cos|(n—20)(5+6)]
" cos|2i-1)E+8) | #sin|(n-2i) (Z+6)|

(18)

In the above sum, Z?zl is equal to zero, where
0= 90° — 180°/n and r is radius of circumscribed
circle of a polygon.

3. Themethod of calculation and results

Calculations were performed with the PWE method
for the propagation of (BAW) for mixed
polarization (longitudinal and shear horizontal) and
shear vertical modes in 2D phononic crystals. These
are composed of a 2D periodic square array of Ni
rods in epoxy. To create the widest complete band
gap, the ratio of the rod radius (the circumscribed
circle radius of a polygon) to lattice constant varies
from 0.05 to 0.5 and the best filling fraction was
found to be about 0.4. The lattice parameter is
Imm. The rods made of Ni are assumed as an
infinitely rigid solid. The choice of 1681 vectors of
the reciprocal lattice for the computation ensures
convergence of the eigenfrequency. The material
parameter values in all the materials involved (Ni

and epoxy) are specified in Table 1 [27].

Table 1. The elastic properties of the materials utilized in component material

Material | p(kg/m?) | C;;(N/m?)10*°

C,(N/m?) x 10%° | C,,(N/m?)10%

Ni 8905 324

16.4 8

epoxy | 1180 0.758

0.442 0.148

The band structure for the phononic crystals with
polygon section 2n+2 sides (n=2 and n=12) is
shown in Fig. 1. In Fig. 1(a) and (c), the dispersion
relation is plotted for the propagation acoustic wave
along X and Y with section 6 and 26 sides. Also,
Fig. 1(b) and (d) are shown the propagation
acoustic wave along Z for the same phononic
crystal. By comparing Fig. 1(a) and (c) it can be
seen that by increasing sides number of the rod
sections, the band structure changes slightly. The
bands shift to lower-frequency and are smoother.
Furthermore, the width of the complete band gap
increases. In Fig. 1(a), the complete band gap is
formed between the sixth and seventh band but in
Fig. 1(c), the complete band gap is formed between
the fifth and sixth band. So the number of side
effects on the location and width of the complete
band gap can be predicted. By comparing Fig. 1(b)
and (d), it can be seen that the band structure for the
propagation acoustic wave along Z has not changed
for n variations.

2r (a)band structure of mode xy,for n=2
1.8F W T—
16L
Yaf
d
B2t
>
2
c
3
9.8
2
Lost
0.4
02}
0 i
X i

M
Wave vector



IJST (2013) 3744; 457-462

460

2r (a)band structure of mode xy. for n=1
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Fig. 1. The band structure in direction MXT for phononic
crystals consisting of Ni rod in epoxy with 2n+2 sides (n
is even) section, (a) n=2 and XY modes, (b) n=2 and Z
mode, (¢) n=12 and XY modes, (d) n=12 and Z mode

The band structure for phononic crystals with
polygon section 2n+2 sides (n=1 and n=11) are
shown in Fig. 1. In Fig. 2(a) and (c), the dispersion
relation are plotted for the propagation acoustic
wave along X and Y with section 4 and 24 sides. By
comparing these figures, one can find that by
increasing the number of sides, the band structure
changes slightly and the width of the complete band
gap is decreased, i.e. in this case, if rods sections
are square, the widest complete band gap will be
formed. This confirms the effect of lattice
symmetry on the complete band gap width. Even in
the previous case when n goes to infinite, the width
of the band gap is less than the width in this case.
Also, Fig. 1(b) and (d) show the propagation
acoustic wave along Z for the same phononic
crystal. By comparing these figures, one can see
that the band structure for propagation acoustic
wave along Z has not changed for n variations. The
results of the band structure for the phononic
crystals in which the section of rods have 2n+1 side
are similar to the results of Fig. 1. These results
corroborate others’ results [30].
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Fig. 2. The band structure in direction MXT for phononic
crystals consisting of Ni rod in epoxy with 2n+2 sides (n
is odd) section, (a) n=3 and XY modes, (b) n=3 and Z
mode, (¢) n=11 and XY modes, (d) n=11 and Z mode

4, Conclusion

In this paper, we generalized the structure factor for
rods by polygon section in two dimensional
phononic crystals. Then, the band gap for XY and Z
vibration modes in two dimensional phononic
crystals with square lattice were calculated. The
propagation of bulk acoustic waves (BAW) was
considered. In addition, the effect of sides’ number
on the band structure and the complete band gap
width was investigated. The results showed that,
when the section of rods have 2n+2(n is even) and
2n+1(n € N) by increasing sides number of the rod
sections, the bands of XY mode shift to lower-
frequency, the bands are smoother, and the width of
the band gap increases. So the number of side

effects on location and width of the complete band
gap can be predicted. However, the band of Z mode
has not changed for n variations. Moreover, when
the section of rods have 2nt2(n is odd) by
increasing sides number of rod sections, the band
structure  of XY mode changes slightly and the
width of the complete band gap is decreased. This
confirms the effect of lattice symmetry on the

complete band gap width. But, the band structure of
Z mode has not changed.
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