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Abstract 

The purpose of this paper is the generalization of structure factor for rods by polygon section in two dimensional 
phononic crystals. If we use the plane wave expansion method (PWE) for the propagation of acoustic waves in 2D 
phononic crystals, structure factor will be an important quantity. In order to confirm the obtained relations, we 
have calculated the band structure for XY and Z vibration modes in 2D phononic crystals and the propagation of 
bulk acoustic waves (BAW) are considered. In addition, the effect of sides’ number on the band structure and the 
complete band gaps width are investigated. Phononic crystals studied in this paper are composites medium of a 
square lattice consisting of parallel nickel rods embedded in epoxy. The frequency is calculated by PWE in the 
condition of elastic rigidity to the solid inclusions. The results showed that, when the section of rods have 2n+2 (n 
is even) and 2n+1ሺn א Nሻ by increasing sides number of the rod sections, the bands of XY mode shift to lower-
frequency, the bands are smoother and the width of the band gap increases, but the band of Z mode has not 
changed by n variations. Moreover, when the section of rods have 2n+2 (n is odd) by increasing sides number of 
rod sections, the band structure of XY mode changes slightly and the width of the complete band gap is decreased. 
This confirms the effect of lattice symmetry on the complete band gap width. But, the band structure of Z mode 
has not changed. 
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1. Introduction 

Elastic wave propagation in periodic structures has 
been the subject of intensive researches and it has 
received a great deal of attention during the past 
two decades [1-7]. These periodic structures, 
phononic crystals, are also called the elastic band 
gap (EBG) materials. These inhomogeneous elastic 
media are composed of one [8, 9], two [1, 10, 11], 
or three [12, 13] dimensional periodic arrays of 
inclusions embedded in a matrix. Due to their 
periodic structure, these materials may exhibit 
under certain conditions, absolute acoustic band 
gaps, i.e. forbidden bands which are independent of 
the propagation direction of the incident elastic 
wave. Because of this property, these structures 
have extensive practical applications, for instance, 
in the construction of sound shields and filters [14-
19], in the refractive devices such as sound-wave 
focusing acoustic lenses [20, 21]. Also, they are 
used in the selective frequency waveguides [22]. In 
view of these applications, it is important to know 
how to design structures with the phononic gap as 
wide as possible. Besides the physical properties of 
the PC crystal component materials, the phononic  
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gap width is found to depend strongly on the lattice 
symmetry, as well on the scatter shape [23, 24].  

The phononic crystal solid/solid materials in two-
dimensional are composed of periodic arrays of 
rods inclusions, under the assumption of wave 
propagation in the plane perpendicular to the axis 
rods. In this case, the vibration modes decouple in 
the mixed-polarization modes (XY) with the elastic 
displacement u perpendicular to the rod axes and in 
the transverse modes (Z) with u parallel to the 
inclusions. To reveal wide acoustic band gaps, we 
first require a large contrast in physical properties, 
such as density and speed of sound, between the 
inclusions and the matrix, next, a sufficient filling 
factor of inclusions [25]. 

In this paper, we generalize structure factor for 
rods by polygon section in two-dimensional 
phononic crystals. Also, the wave propagation of 
bulk acoustic is studied in square array of Nickel 
rods with polygon section embedded in epoxy. We 
reviewed formulation of plane wave method for 
elastic waves propagating in two-dimensional 
phononic crystal. Moreover, we calculate the band 
gap for XY and Z vibration modes, and the effect of 
sides number on the band structure and band gaps 
are investigated.  
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2. Theory 

The behavior of elastic waves propagating in a solid 
can be described by equation of motion, and can be 
obtained by considering the stresses acting on a 
volume element. Application of Newton’s laws 
gives,  
 

ߩ
డమ௨೔
డ௧మ

ൌ ∑ డ்೔ೖ
డ௥ೖ

,௞                                                    (1) 
 

Here	ߩ, ui, ௜ܶ௞ and rk are mass density, component 
of displacement vector, component of stress tensor 
and the position vector, respectively. The 
component of stress tensor is given as: 
 
௜ܶ௝ ൌ ∑ ܿ௜௝௞௟ݑ௞,௟௞௟ .                                                (2) 

 
Here ܿ௜௝௞௟ is elastic stiffness tensor. By 

considering the eigenfrequencies and normal mode, 
equation (1) may be written as [26], 
 
௞߱ߩൣ

ଶߜ௜௟ െ ܿ௜௝௟௞݇௞ ௝݇൧ࢋ௟ሺ݇ሻ ൌ 0.                           (3) 
 

Here ߱௞ is eigenfrequency for wave vector k. By 
using Voiget notation and cubic symmetry, we have 
three elastic constants ܿଵଵ, ܿଵଶ and	ܿସସ. Due to the 
spatial periodicity of the phononic structure, the 
material constant ߩሺݎሻ and ܿ௜௝௟௞ሺݎሻ are periodic 
functions of the position. It means that ρ and C are 
functions of the coordinates x and y where the z 
axis defines the direction of the rod axis. Then we 
can expand in the Fourier series with respect to 
two-dimensional reciprocal lattice vector 
 
ρሺܚሻ ൌ ∑ ρሺ۵ሻ expሺi۵. ሻܚ ,G                                   (4) 
 
and  
 
C୧୨ሺܚሻ ൌ ∑ C୧୨ሺ۵ሻexp	ሺi۵. ሻGܚ .                               (5) 
 

Where r is the position vector of components x 
and y and G= (G1, G2) are the reciprocal lattice 
vectors in the xoy plane. The Fourier coefficients 
ρሺ۵ሻ and C୧୨ሺ۵ሻ take the forms 
 
ρሺ۵ሻ ൌ

ଵ

A
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and 
 
C୧୨ሺ۵ሻ ൌ

ଵ

A
∬dଶr	C୧୨ሺܚሻ	exp	ሺെi۵.  ሻ.                   (7)ܚ

 
The structure factor is defined as follows: 
 
FG ൌ

ଵ

A
∬dଶ r expሺെi۵.  ሻ,                                   (8)ܚ

 
here A is Unit cell area. If one of the denominators 
of FG	goes to zero, Eq. (4) and (5) will give the 
average density and elastic constant 

 
ρG ൌ ρത ൌ ρAf ൅ ρBሺ1 െ fሻ,                                   (9) 
 
and 
 
C୧୨G ൌ Cన఩തതത ൌ C୧୨

Af ൅ C୧୨
Bሺ1 െ fሻ.                         (10) 

 
Otherwise, Eq. (4) and (5) may be written as 
 
ρG ൌ ሺρA െ ρBሻFG                                              (11) 
 
and  
 
C୧୨G ൌ ൫C୧୨

A െ C୧୨
B൯FG.                                       (12) 

 
Where f is filling fractions and mass density ρA 

and the elastic constants C୧୨
A are considered inside 

the rods and	ρB and C୧୨
B in the background. 

The structure factor for polygon section of filled 
inclusion will be as follows: 
i) For polygons, in which the number of sides is 

2n+1 ሺn א Nሻ 
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Where,  
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In the above sum, if i+1>n, it will take i+1=n.  

ii) For polygons in which the number of sides is 
2n+2 (n is even) 
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iii) For p

2n+2 
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