http://ijsts.shirazu.ac.ir

On the multiplication operator on analytic function spaces

Kh. Jahedi

Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran E-mail: mjahedi80@yahoo.com

Abstract

Let H be a Hilbert space of functions analytic on a plane domain Ω such that for every λ in Ω the functional of evaluation at λ is bounded. Assume further that H contains the constants and admits multiplication by the independent variable z, M_z , as a bounded operator. We give sufficient conditions for M_{z^n} to be reflexive for all positive integers n.

Keywords: Hilbert spaces of analytic functions; multiplication operators; reflexive operator; multipliers; Caratheodory hull; bounded point evaluation; spectral set

1. Introduction

By a domain we understand a connected open subset of the plane. If B is a bounded domain in the plane, then the Caratheodory hull (or \mathbb{C} -hull) of B is the complement of the closure of the unbounded component of the complement of the closure of B. The \mathbb{C} -hull of B is denoted by B^* . Intuitively, B^* can be described as the interior of the outer boundary of B, and in analytic terms it can be defined as the interior of the set of all points Z_0 in the plane such that $|p(z_0)| \le \sup\{|p(z)|: z \in B\}$ for all polynomials p. The components of B^* are simply connected; in fact, one can easily see that each of these components has a connected complement. The component of B^* that contains B is denoted by B_1 . Note that for all polynomials p, $||p||_{B} = ||p||_{B_{1}}$. Note that B_{1} is a Caratheodory domain and so by the Farrel-Rubel-Shields Theorem ([1, Theorem 5.1, p.151]), each bounded analytic function on B_1 can be approximated by a sequence of polynomials pointwise boundedly.

Now let *H* be a separable Hilbert space and let B(H) denote the algebra of all bounded linear operators on *H*. Recall that if $A \in B(H)$, then Lat(A) is by definition the lattice of all invariant subspaces of *A*, and AlgLat(A) is the algebra of

Received: 6 May 2013 / Accepted: 6 July 2013

all operators B in B(H) such that $Lat(A) \subset Lat(B)$. An operator A in B(H) is said to be *reflexive* if AlgLat(A) = W(A), where W(A) is the smallest subalgebra of B(H) that contains A and the identity I is closed in the weak operator topology. For some sources on these topics see [2-7].

Consider a Hilbert space H of functions analytic on a plane domain G, such that for each $\lambda \in G$ the linear functional, e_{λ} , of evaluation at λ is bounded on H. Assume further that H contains the constant functions and multiplication by the independent variable z defines a bounded linear operator M_z on H. The continuity of point evaluations along with the Riesz representation theorem imply that for each $\lambda \in G$ there is a unique function $k_{\lambda} \in H$ such that $e_{\lambda}(f) = f(\lambda) = \langle f, k_{\lambda} \rangle$, $f \in H$. The function k_{λ} is called the *reproducing kernel* for the point λ .

A complex valued function φ on G for which $\varphi f \in H$ for every $f \in H$ is called a *multiplier* of H and the collection of all these multipliers is denoted by M(H). Each multiplier φ of H determines a multiplication operator M_{φ} on H by $M_{\varphi}f = \varphi f$, $f \in H$. It is well known that each multiplier is a bounded analytic function on G ([8]). In fact, $\|\varphi\|_{G} \leq \|M_{\varphi}\|$. We shall use the

following notation for the norm of the operator M_{α} :

$$\left\|\varphi\right\|_{\infty} = \left\|M_{\varphi}\right\|_{\infty}$$

We also point out that if φ is a multiplier and $\lambda \in G$, then

$$M_{\varphi}^{*}k_{\lambda}=\varphi(\lambda)k_{\lambda}.$$

Also, we say that M(H) is isometrically rotation invariant if whenever $\varphi \in M(H)$, $\varphi_{\theta} \in M(H)$ and $\|\varphi\|_{\infty} = \|\varphi_{\theta}\|_{\infty}$ where $\varphi_{\theta}(z) = \varphi(e^{-i\theta}z)$. By H(G) and $H^{\infty}(G)$ we mean respectively the set of analytic functions on a plane domain G and the set of bounded analytic functions on G.

2. Main results

In this article, we investigate the reflexivity of the powers of the multiplication operator M_z acting on a Hilbert function space.

From now on, let Ω be a domain in the complex plane such that Ω_1 is equal to the open unit disc D. Also, suppose that the Hilbert space H under consideration satisfy the following axioms:

Axiom 1. H is a subspace of the space of all analytic functions on Ω .

Axiom 2. For each $\lambda \in \Omega$, the linear functional of evaluation at λ , e_{λ} , is bounded on H.

Axiom 3. The uniform limits of polynomials on Ω is contained in M(H) and M(H) is isometrically rotation invariant.

Axiom 4. The sequence $\{f_k\}_{k \in \mathbb{Z}}$ is an orthogonal basis for H where $f_k(z) = z^k$ for all integers k. Note that by axiom 4, each function $f \in H$ can be represented by series expansion $f = \sum_n \hat{f}(n) f_n$. For $h \in M(H)$ and $w \in \partial D$, define h_w by $h_w(z) = h(wz)$. Thus $\hat{h}_w(n) = w^n \hat{h}(n)$ for all n. Also, since |w| = 1 we have

$$\|h_w\|^2 = \sum_n |\hat{h}_w(n)|^2 \|f_n\|^2 = \sum_n |\hat{h}(n)|^2 \|f_n\|^2 = \|h\|^2.$$

The following theorem extends the results obtained by Allen Shields [9] that have been proved only for the special case where H is the Hilbert space of formal Laurent series.

Lemma 2.1. Let $\varphi \in M(H)$. If g is a continuous complex valued function on ∂D and $d\lambda = |dw|/2\pi$ is the normalized Lebesgue measure on ∂D , then the operator

$$\int_{\partial D} \varphi_{w} g(w) d\lambda$$

defined by

$$\left(\int_{\partial D} \varphi_{w} g(w) d\lambda\right) f = \int_{\partial D} g(w) M_{\varphi_{w}} f d\lambda$$

is in M(H) and

$$\left\|\int_{\partial D}\varphi_{w}g(w)d\lambda\right\|_{\infty}\leq\left\|M_{\varphi}\right\|\int_{\partial D}|g|d\lambda$$

Proof: Note that the strong operator continuity of φ_w allows us to define

$$\int_{\partial D} \varphi_{w} g(w) f d\lambda$$

for all $f \in H$. If $f, h \in H$, then

$$<\int_{\partial D} \varphi_{w} g(w) f d\lambda, h >= \int_{\partial D} g(w) < \varphi_{w} f, h > d\lambda.$$

So we get

$$\left\|\int_{\partial D}\varphi_{w}g(w)fd\lambda\right\|\leq \left\|M_{\varphi}\right\|\left\|f\right\|\int_{\partial D}|g|d\lambda.$$

Hence

$$\left(\int_{\partial D}\varphi_{v} g(w) d\lambda\right) f = \int_{\partial D} g(w) M_{\varphi} \int_{w} f d\lambda \leq \left\|M_{\varphi}\right\| \left\|f\right\|_{\partial D} \left\|g\right\| d\lambda.$$

This completes the proof.

Lemma 2.2. If $\varphi \in H(\Omega_1) \cap M(H)$, then there exists a sequence of polynomials $\{r_n\}$ such that $\hat{r}_n(j) = (1 - \frac{j}{n+1})\hat{\varphi}(j)$ whenever j = 0, ..., n

and is 0 else, and $M_{r_n} \to M_{\varphi}$ in the weak operator topology.

Proof: Let $\varphi \in H(\Omega_1) \cap M(H)$. Since $\Omega_1 = D$, we can represent φ by a power series $\sum_{k=0}^{\infty} \hat{\varphi}(k) z^k$. Put

$$P_n(\varphi) = \sum_{k=0}^n (1 - \frac{k}{n+1})\hat{\varphi}(k)z^k, \quad n \ge 0$$

and

$$K_n(w) = \sum_{|k| \le n} (1 - \frac{|k|}{n+1}) w^k, \quad w \in \partial U, \ n \ge 0$$

Then

$$\int_{\partial D} \varphi_{w} K_{n}(\overline{w}) d\lambda = M_{\varphi_{0}K_{n}}, \quad n \ge 0$$

where

$$(\varphi_*K_n)(z) = \sum_{j=0}^n \hat{\varphi}(j) \hat{K}_n(j) z^j = P_n(\varphi).$$

Note that $K_n \ge 0$ and

$$\int_{\partial D} K_n d\lambda = 1.$$

For all $n \ge 0$, $P_n(\varphi) \in M(H)$ and by Lemma 2.1, we get

$$||M_{P_{n}(\varphi)}||=||M_{\varphi \ast K_{n}}||\leq ||M_{\varphi}||\int_{\partial D}K_{n}d\lambda =||M_{\varphi}||.$$

Put $r_n = P_n(\varphi)$. Note that M_{r_n} is represented by the matrix whose (i,j)-th entry is

$$< M_{r_n} f_j, f_i >= \hat{r}_n (i-j) \|f_i\|^2 = (1 - \frac{i-j}{n}) \hat{\phi}(i-j) \|f_i\|^2$$

Hence

$$\lim_{n} < M_{r_{n}} f_{j}, f_{i} > = < M_{\varphi} f_{j}, f_{i} >$$

for all base elements f_j and f_i in H. By the boundedness of the sequence $\{M_{r_n}\}$ we have

 $M_{r_n} \rightarrow M_{\varphi}$ in the weak operator topology. This completes the proof.

Theorem 2.3. If $\{e_{\lambda} : \lambda \in \Omega\}$ is norm bounded, then M_{k} is reflexive for all $k \ge 1$.

Proof: The boundedness of point evaluations and the Closed Graph Theorem ensure that in multiplication by z, M_z is a bounded operator on Η. Let $k \in N$ and note that $W(M_{k}) \subset AlgLat(M_{k})$. On the other hand, let $X \in AlgLat(M_k)$. Since $Lat(M_z) \subset Lat(M_k)$, we have $Lat(M_z) \subset Lat(X)$. This implies that $X \in AlgLat(M_{\tau})$. Note that since $M_z^* e_\lambda = \overline{\lambda} e_\lambda$ for all λ in Ω , the one dimensional span of e_{λ} is invariant under M_{z}^{*} . Therefore, it is invariant under X^* and we can write $X^* e_{\lambda} = \varphi(\lambda) e_{\lambda}, \lambda \in \Omega$. So

$$< Xf, e_{\lambda} > = < f, X^*e_{\lambda} > = \varphi(\lambda)f(\lambda)$$

for all $f \in H$ and $\lambda \in \Omega$. This implies that $X = M_{\varphi}$ and $\varphi \in M(H)$, hence $\varphi \in H^{\infty}(\Omega)$. Now put $N = H^{\infty}(\Omega_1)$. Then $N \neq \emptyset$, since $l \in N$. Note that by axiom 3, $N \subset \mathcal{M}(H)$. To see this let $f \in H^{\infty}(\Omega_1)$. Since Ω_1 is a Caratheodory domain, by the Farrel-Rubel-Shields Theorem [1, Theorem 5.1, p. 151], there is a sequence $\{p_n\}$ of polynomials converging to f such that for all n, N for some c > 0. So $\{p_n\}_n$ is a normal family in $H^{\infty}(\Omega)$ and by passing to a subsequence if necessary, we may suppose that for some function g, $p_n \rightarrow g$ uniformly on compact subsets of Ω , this implies that indeed g = f. Hence by axiom 3, $f \in M(H)$ and so $N \subset M(H) \subset H$. Also, it is a closed subspace of H, since if $\{h_n\}_n \subset N$ and $h_n \to f$ in H, so for all n, $\|h_n\|_H \leq c_1$ for some $c_1 > 0$. Because point evaluations are bounded, for all λ in Ω we have

$$h_n(\lambda) = \langle h_n, e_\lambda \rangle \rightarrow \langle f, e_\lambda \rangle = f(\lambda).$$

Also, we note that for all λ in Ω ,

$$|h_{n}(\lambda)| = |\langle h_{n}, e_{\lambda} \rangle| \le ||h_{n}||_{H} ||e_{\lambda}|| \le c_{2} ||h_{n}||_{H}$$

where $c_2 = \sup\{\|e_{\lambda}\| : \lambda \in \Omega\}$. Thus

$$\left\|\boldsymbol{h}_{n}\right\|_{\Omega} \leq c_{2}\left\|\boldsymbol{h}_{n}\right\|_{H} \leq c_{1}c_{2}$$

for all n. Since $h_n \in H^{\infty}(\Omega_1)$, $\|h_n\|_{\Omega_1} = \|h_n\|_{\Omega}$ and so $||h_n||_{\Omega_1} \le c_1 c_2$ for all n. This implies that $\{h_n\}_n$ is a normal family in $H^{\infty}(\Omega_1)$ and we may assume that for some function g, $h_n \rightarrow g$ uniformly on compact subsets of Ω_1 . Thus $g \in H^{\infty}(\Omega_1)$. But by pointwise convergence f = g on Ω and so f can be extended to a bounded analytic function on Ω_1 , i.e., $f \in H^{\infty}(\Omega_1)$ and so N is indeed a closed subspace of *H*. Now clearly $N \in Lat(M_{\tau})$, thus $XN \subset N$. Since $1 \in N$ we get $X = \varphi \in N \subset H^{\infty}(\Omega_1)$. Now by Lemma 2.2, there exists a sequence of polynomials $\{r_n\}$ (indeed $r_n = P_n(\varphi)$) such that $M_{r_n} \to M_{\varphi}$ in the weak operator topology. Now let \mathbf{M}_k be the closed linear span of the set $\{f_{nk}: n \ge 0\}$ (recall that $f_i(z) = z^i$ for all *i*). We have

$$M_{z^k}f_{nk} = f_{(n+1)k} \in \mathbf{M}_k$$

for all $n \ge 0$. Thus $\mathbf{M}_k \in Lat(M_{z^k})$ and so $\mathbf{M}_k \in Lat(M_{\varphi})$. Let $\varphi(z) = \sum_{n=0}^{\infty} \hat{\varphi}(n) z^n$. Since $1 \in \mathbf{M}_k$, thus $M_{\varphi} 1 = \varphi \in \mathbf{M}_k$. Hence $\hat{\varphi}(i) = 0$ for all $i \ne nk$, $n \ge 0$. Now, by a consequence of the particular construction of r_n used in Lemma 2.2, each r_n should be a polynomial in z^k , i.e., $r_n(z) = q_n(z^k)$ for some polynomial q_n . Thus

$$M_{r_n} = r_n(M_z) = q_n(M_{z^k}) \rightarrow X$$

in the weak operator topology. Hence $X \in W(M_{z^k})$. Thus M_{z^k} is reflexive and this completes the proof.

Acknowledgment

This investigation has been supported by project 90548 of the Islamic Azad University, Shiraz Branch, Iran.

References

[1] Gamelin, T. (1984). Uniform algebra. Chelsea, N.Y.

[2] Dehghan, Y. N. & Yousefi, B. (2005). Reflexivity of canonical models associated with generalized Bergman kernels. *Korean Annals of Math.*, 22(1), 95-102.

[3] Faghih Ahmadi, M. & Hedayatian, K. (2010). On the reflexivity of hyponormal and weighted shift operators. *Acta Mathematica Scientia*, *30B*(4), 1100-1104.

[4] Seddighi, K. & Yousefi, B. (1992). On the reflexivity of operators on function spaces. *Proc. Amer. Math. Soc.*, *116*, 45-52.

[5] Yousefi, B. (2004). Multiplication operators on Hilbert spaces of analytic functions. *Archiv der Mathematik*, 83(6), 536-539.

[6] Yousefi, B. (2005). On the eighteenth question of Allen Shields. *International Journal of Mathematics*, 16(1), 1-6.

[7] Yousefi, B. & Khoshdel, Sh. (2012). Reflexivity of powers of the multiplication operator on special function spaces. *Acta Mathematica Scientia*, *32B* (6), 2279-2284.

[8] Shields, A. & Wallen, L. (1971). The commutants of certain Hilbert space operators. *Ind. Univ. Math. J.*, 20, 777-788.

[9] Shields, A. L. (1974). Weighted shift operators and analytic functions theory. *Math. Surveys, A.M.S. Providence, 13*, 49-128.