
IJST (2013) 37A4: 439-444 
Iranian Journal of Science & Technology 

http://ijsts.shirazu.ac.ir 

 
The operational matrix of fractional integration  

for shifted Legendre polynomials 
 

M. H. Akrami, M. H. Atabakzadeh and G. H. Erjaee* 
 

Department of Mathematics, College of Sciences, Shiraz University, P.O. Box 74811-71466, Shiraz, Iran 
E-mail: erjaee@shirazu.ac.ir 

 

Abstract 

In this article we implement an operational matrix of fractional integration for Legendre polynomials. We 
proposed an algorithm to obtain an approximation solution for fractional differential equations, described in 
Riemann-Liouville sense, based on shifted Legendre polynomials. This method was applied to solve linear multi-
order fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated 
examples. Numerical results reveal that this method gives ideal approximation for linear multi-order fractional 
differential equations. 
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1. Introduction 

Many problems in various fields can be 
successfully modeled by fractional differential 
equations, such as theoretical physics, biology, 
viscoelasticity, electrochemistry and other physical 
processes. In the last decade, fractional differential 
equation has attracted the attention of 
mathematicians, physicists and engineers [1, 2]. 
Therefore, the accurate methods of solving 
fractional differential equations (FDEs) are a 
challenging research these days. There are several 
analytic methods such as Adomian decomposition 
method [3], variational iteration method [4] and 
homotopy perturbation method [5]. There are also 
many numerical methods introduced for solving 
FDEs in literature. Podlubny introduced a 
numerical method for arbitrary order derivative 
based on the relationship between the Gruሷnwald-
Letnikov and Riemann-Liouville derivative [2]. 
Diethelm et al. has presented predictor-corrector 
method for numerical solution [6] and also Erjaee et 
al. have shown good results in numerical method 
[7]. Recently solving FDEs using orthogonal 
polynomials have also received considerable 
attention. Using this method reduces the differential 
equation to a system of algebraic equations. The 
operational matrix of fractional derivative has been 
determined for some type of orthogonal 
polynomials such as Chebyshev polynomials [8] 
and Legendre polynomials [9]. Paraskevopoulos 
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has suggested the operational matrix of integration 
by using these polynomials as a basis in ODEs [10, 
11]. Recently, Bhrawya and Alofi [12] derived the 
operational matrix of fractional integration for 
shifted Chebyshev polynomials. 

In the present article, we extend the application of 
Legendre polynomials for solving FDEs along the 
line of Riemann-Liouville. For this purpose we first 
write the FDEs in the integral form. Then we 
convert this integral equation to an algebraic 
equation system by using the Legendre polynomials 
similar to the operational matrix of fractional 
integration. Now, by solving the resultant algebraic 
equations, we obtain an approximation analytical 
solution for the FDEs. 

The article is organized as follows. We start by 
introducing some necessary definitions and 
preliminaries for fractional calculus and Legendre 
polynomials. In Section 3, we state and prove the 
main result of this article, which gives a matrix 
form for fractional integration. In Section 4, we 
apply our method for solving linear multi-order 
FDEs. In Section 5, we illustrate several examples 
and we come up with a conclusion in Section 6. 

2. Preliminaries and notations 

There are several definitions of fractional derivative 
and integral such as Caputo, Gruሷnwald-Letnikov 
and Riemann-Liouville. These definitions are not 
necessarily equivalent in different sense [2]. Here, 
we state fractional differential operator in the 
Riemann-Liouville sense.  
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Definition 1. The Riemann-Liouville fractional 
integral operator of order ൒ ૙, of a function	ࢌሺ࢞ሻ, 
is defined as  
 
ሺ࢞ሻࢌࢻࡵ ൌ

૚

ડሺࢻሻ
׬ ሺ࢞ െ ࢚ሻିࢻ૚ࢌሺ࢚ሻ࢚ࢊ
࢞
૙ . ࢻ ൐ ૙, ࢞ ൐ ૙	,    (1) 

ሺ࢞ሻࢌ૙ࡵ ൌ   .ሺ࢞ሻࢌ
 

Properties of the operator ࢻࡵ can be found in [11], 
we just mention the following property 
 

ࢽ࢞ࢻࡵ ൌ
ડሺࢽା૚ሻ

ડሺࢻାࢽା૚ሻ
 (2)                                           ࢽାࢻ࢞

 
The Riemann-Liouville fractional of order ࢻ will 

be denoted by ࢻࡰand defined by 
 

ሺ࢞ሻࢌࢻࡰ ൌ
࢓ࢊ

࢓࢞ࢊ
൫ࢌࢻି࢓ࡵሺ࢞ሻ൯,                                 (3) 

 
where ࢓െ ૚ ൏ ࢻ ൑ ࢓,࢓ א  and m is the ࡺ
smallest integer order greater than ࢻ. 
 
Lemma 1. if ࢓െ ૚ ൏ ࢻ ൑ ࢓,࢓ א  then ,ࡺ
 

ሺ࢞ሻࢌࢻࡵࢻࡰ ൌ  	,ሺ࢞ሻࢌ
ሺ࢞ሻࢌࢻࡰࢻࡵ	 ൌ ሺ࢞ሻࢌ െ ∑ ሻሺ૙ାሻ࢏ሺࢌ

࢏࢞

!࢏
, ࢞ ൐ ૙ି࢓૚

ୀ૙࢏ .         (4) 

Shifted Legendre polynomials 

Let ࢏ࡼሺ࢞ሻ; ࢞ א ሺ૙, ૚ሻ be the shifted Legendre 
polynomials. Then ࢏ࡼሺ࢞ሻ can be obtained as 
follows: 
 
ା૚ሺ࢞ሻ࢏ࡼ ൌ

ሺ૛࢏ା૚ሻሺ૛࢞ି૚ሻ

ሺ࢏ା૚ሻ
ሺ࢞ሻ࢏ࡼ െ

࢏

ା૚࢏
,૚ሺ࢞ሻି࢏ࡼ ࢏ ൌ

૚, ૛, …,					(5) 
 
where ࡼ૙ሺ࢞ሻ ൌ ૚ and ࡼ૚ሺ࢞ሻ ൌ ૛࢞ െ ૚. The 
analytic form of the shifted Legendre polynomial 
  ሺ࢞ሻ of degree i given by࢏ࡼ
 

ሺ࢞ሻ࢏ࡼ ൌ ∑ ሺെ૚ሻ࢏ା࢏࢑
࢑ୀ૙

ሺ࢏ା࢑ሻ!࢞࢑

ሺ࢑ି࢏ሻሺ࢑!ሻ૛
.                           (6) 

 
where ࢏ࡼሺ૙ሻ ൌ ሺെ૚ሻ࢏ and ࢏ࡼሺ૚ሻ ൌ ૚. The 
orthogonality condition is 
 

׬ ࢐ሺ࢞ሻࡼሺ࢞ሻ࢏ࡼ
૚
૙ ࢞ࢊ ൌ ቊ

૚

૛࢏ା૚
࢏								 ൌ ࢐,

		૙												࢏ ് ࢐.
                  (7) 

 
A function y(x), square integrable in [0, 1], may 

be expressed in terms of shifted Legendre 
polynomials as 
 

࢟ሺ࢞ሻ ൌ෍࢏ࡼ࢏ࢉ

ஶ

ୀ૙࢏

ሺ࢞ሻ, 

 
where the coefficients ࢏ࢉ are given by 
 
࢏ࢉ ൌ ሺ૛࢏ ൅ ૚ሻ׬ ࢟ሺ࢞ሻ࢏ࡼሺ࢞ሻ,࢞ࢊ				࢏ ൌ ૚, ૛, …

૚
૙       (8) 

 
In practice, only the first ሺࡺ ൅ ૚ሻ terms shifted 

Legendre polynomials are considered. Therefore 
࢟ሺ࢞ሻ can be written in the form 
 
ሺ࢞ሻെ෥ࡺ࢟ ∑ ࢏ࡼ࢏ࢉ

ࡺ
ୀ૙࢏ ሺ࢞ሻ ൌ  ઴ሺ࢞ሻ,                       (9)ࢀ࡯

 
where the shifted Legendre coefficient vector C and 
the shifted Legendre vector ઴ሺ࢞ሻ are given by 
 
ࢀ࡯ ൌ ሾࢉ૙, ,૚ࢉ … ,  ,ሿࡺࢉ
઴ሺ࢞ሻ ൌ ሾࡼ૙, …,૚ࡼ ,  (10)                                  .ࢀሿࡺࡼ
 

If we define the ࣏ times repeated integration of 
Legendre vector ઴ሺ࢞ሻ by ࣏ࡵ઴ሺ࢞ሻ, (see [11]), then 
 
 ઴ሺ࢞ሻ,                                               (11)࣏࡭઴ሺ࢞ሻെ෥࣏ࡵ
 
where ࣏	is an integer value and ࣏࡭ is the 
operational matrix of integration of ઴ሺ࢞ሻ. More 
details are presented in [11]. 

3. Operational Matrix of Fractional Integration 

In this section we generalized the shifted Legendre 
operational matrix (SLOM) of integration (11) for 
fractional calculus. 
 
Theorem 3. Let ઴ሺ࢞ሻ be a shifted Legendre 
polynomial then 
 
 ઴ሺ࢞ሻ,                                               (12)࣏࡭઴ሺ࢞ሻെ෥࣏ࡵ
 
where ࣏࡭ is the ሺࡺ	 ൅ ૚ሻ ൈ ሺࡺ	 ൅ ૚ሻ operational 
matrix of integration of order ࣏ in the Riemann-
Liouville sense and is defined as follows: 
 

࣏࡭ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

∑ ࢑,૙,૙ࣈ
૙
࢑ୀ૙

∑ ࢑,૚,૙ࣈ
૚
࢑ୀ૙

ڭ

∑ ࢑,૙,૚ࣈ
૙
࢑ୀ૙ … ∑ ࢑,ࡺ,૙ࣈ

૙
࢑ୀ૙

∑ ࢑,૚,૚ࣈ
૚
࢑ୀ૙ … ∑ ࢑,ࡺ,૚ࣈ

૚
࢑ୀ૙

ڭ … ڭ
∑ ࢑,૙,࢏ࣈ
࢏
࢑ୀ૙
ڭ

∑ ࢑,૙,ࡺࣈ
ࡺ
࢑ୀ૙

∑ ࢑,૚,࢏ࣈ
࢏
࢑ୀ૙ … ∑ ࢑,ࡺ,࢏ࣈ

࢏
࢑ୀ૙

ڭ … ڭ
∑ ࢑,૚,ࡺࣈ
ࡺ
࢑ୀ૙ … ∑ ࢑,ࡺ,ࡺࣈ

ࡺ
࢑ୀ૙ ی

ۋ
ۋ
ۋ
ۊ

,   (13) 

 
where 
 
࢐,࢑,࢏ࣈ ൌ ሺ૛࢐ ൅ ૚ሻ∑

ሺି૚ሻ࢏శ࢐శ࢑శ࢒ሺ࢏ା࢑ሻ!ሺ࢒ା࢐ሻ!

ሺ࢑ି࢏ሻ!࢑!ሺ࢑ାࢻା૚ሻሺ࢒࢐ିሻ!ሺ࢒!ሻ૛ሺ࢑ା࢒ାࢻା૚ሻ
࢐
ୀ૙࢒ .  (14) 

 
Proof: Having the analytic form of the shifted 
Legendre polynomials (6) and using Eqs. (1) and 
(2) gets 
 

ሺ࢞ሻ࢏ࡼࢻࡵ ൌ ∑ ሺି૚ሻ࢏శ࢑ሺ࢏ା࢑ሻ!

ሺ࢑ି࢏ሻ!ሺ࢑!ሻ૛
࢏
࢑ୀ૙   ൫࢞࢑൯ࢻࡵ

	ൌ ∑ ሺି૚ሻ࢏శ࢑ሺ࢏ା࢑ሻ!

ሺ࢑ି࢏ሻ!࢑!
࢏
࢑ୀ૙

శ࢑ࢻ࢞

ડሺ࢑ାࢻା૚ሻ
,		                            (15) 

 
࢏	 ൌ ૙, ૚, …  								.ࡺ,

 
Now, approximate ࢞ࢻା࢑ by ሺࡺ ൅ ૚ሻ terms of 

shifted Legendre series yields 
 

ା࢑ࢻ࢞ ൌ ∑ ࢐ࡼ࢑,࢐ࢇ
ࡺ
࢐ୀ૙ ሺ࢞ሻ,                                      (16) 
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where 
 

࢑,࢐ࢇ		 ൌ ሺ૛࢐ ൅ ૚ሻන ା࢑ࢻ࢞
૚

૙
 	࢞ࢊ࢐ሺ࢞ሻࡼ

									ൌ ሺ૛࢐ ൅ ૚ሻ෍
ሺെ૚ሻ࢏ା࢒ሺ࢐ ൅ !ሻ࢒
ሺ࢐ െ !ሻ࢒ ሺ࢒!ሻ૛

࢐

ୀ૙࢒

න ା࢑ࢻ࢞
૚

૙
 						࢞ࢊ

							ൌ ሺ૛࢐ ൅ ૚ሻ∑
ሺି૚ሻ࢏శ࢒ሺ࢐ା࢒ሻ!

ሺ࢒࢐ିሻ!ሺ࢒!ሻ૛ሺ࢑ା࢒ାࢻା૚ሻ
࢐
ୀ૙࢒ .			                 (17) 

 
Now, by employing Eqs. (15)-(17) we obtain 

 

ሺ࢞ሻെ෥෍෍࢏ࡼࢻࡵ
ሺെ૚ሻ࢏ା࢑ሺ࢏ ൅ ࢑ሻ!

ሺ࢏ െ ࢑ሻ! ࢑! ડሺ࢑ ൅ ࢻ ൅ ૚ሻ
࢐ሺ࢞ሻࡼ࢑,࢐ࢇ

ࡺ

࢐ୀ૙

࢏

࢑ୀ૙

 

ൌ ∑ ൫∑ ࢐,࢑,࢏ࣈ
࢏
࢑ୀ૙ ൯ࡺ

࢐ୀ૙ ࢏				,࢐ሺ࢞ሻࡼ ൌ ૙, ૚, …  (18)     		,ࡺ,
 
where ࢐,࢑,࢏ࣈ is given in Eq. (14). Writing the last 
equation in a vector form gives 
 

ሺ࢞ሻെ෥࢏ࡼࢻࡵ		 ൥෍࢏ࣈ,૙,࢑

࢏

࢑ୀ૙

,෍࢏ࣈ,૚,࢑

࢏

࢑ୀ૙

, … ,෍࢑,ࡺ,࢏ࣈ

࢏

࢑ୀ૙

൩઴ሺ࢞ሻ,	 

࢏ ൌ ૙, ૚,…  (19)                                                    	,ࡺ,
 
which produces the desired result.  

4. Application of the operational matrix in 
fractional integral 

Now, we are ready to apply the SLOM method to 
the fractional integration. Here, we apply the 
method to a multi-order fractional differential 
equation in the Riemann-Liouville sense. So, let ࢻ 
to be the highest fractional order of FDE. Then by 
employing properties of fractional integral we can 
write the FDE as an integral equation of order ࢻ. 
Now by using operational matrix we approximate 
the resultant integral equation. 
Consider the following linear multi-order FDE 
 
ሺ࢞ሻ࢟ࢻࡰ ൌ ∑ ሺ࢞ሻ࢟࢏ࢼࡰ࢏ࢇ ൅ ሺ࢞ሻ࢟ࢻࡵ࢑ା૚ࢇ ൌ ࢑,ሺ࢞ሻࢍ

ୀ૚࢏  (20) 
 
with initial conditions 
 
࢟ሺ࢏ሻሺ૙ሻ ൌ ࢏									,࢏ࢊ ൌ ૙, ૚,ڮ , ࢔ െ ૚,                (21) 
 
where ࢐ࢇ		ሺ࢐ ൌ ૚,ڮ , ࢑ ൅ ૚ሻ are real constant 
coefficients and also ࢔ െ ૚ ൏ ࢻ ൑ ,࢔ ૙ ൏ ૚ࢼ ൏
૛ࢼ ൏ ڮ ൏ ࢑ࢼ ൏ -denote the Riemann ࢻࡰ and ࢻ
Liouville fractional derivative of order ࢻ. For the 
existence, uniqueness and continuous dependence 
of the solution to the problem, see [13]. To solve 
problem (20) and (21) we apply the Riemann-
Liouville integral of order ࢻ on (20) and using 
Lemma.1 to get 
 

									࢟ሺ࢞ሻ െ ∑ ࢟ሺ࢏ሻሺ૙ାሻ
࢏࢞

!࢏
૚ି࢔
ୀ૙࢏ ൌ

∑ ࡵ࢐ࢇ
࢐࢑ࢼିࢻ

࢐ୀ૚ ቀ࢟ሺ࢞ሻ െ ∑ ࢟ሺ࢏ሻሺ૙ାሻ
࢏࢞

!࢏

࢐ି૚࢔
ୀ૙࢏ ቁ ൅

ሺ࢞ሻ࢟ࢻࡵ࢑ା૚ࢇ ൅  ሺ࢞ሻ,                                       (22)ࢍࢻࡵ

 
࢟ሺ࢏ሻሺ૙ሻ ൌ ࢏									,࢏ࢊ ൌ ૙, ૚,ڮ , ࢔ െ ૚, 

 
where ࢐࢔ െ ૚ ൏ ࢻ ൑ ,࢐࢔ ࢐࢔ א   Hence .ࡺ
 
	࢟ሺ࢞ሻ ൌ ∑ ࡵ࢐ࢇ

࢐࢑ࢼିࢻ
࢐ୀ૚ ࢟ሺ࢞ሻ ൅ ሺ࢞ሻ࢟ࢻࡵ࢑ା૚ࢇ ൅    (23)	ሺ࢞ሻ,ࢌ

 
࢟ሺ࢏ሻሺ૙ሻ ൌ ࢏									,࢏ࢊ ൌ ૙, ૚,ڮ , ࢔ െ ૚, 

 
where  
 

ሺ࢞ሻࢌ ൌ ሺ࢞ሻࢍࢻࡵ ൅෍࢏ࢊ
࢏࢞

!࢏

૚ି࢔

ୀ૙࢏

൅෍ࡵ࢐ࢇ
࢐ࢼିࢻ

࢑

࢐ୀ૚

ቌ෍ ࢏ࢊ
࢏࢞

!࢏

࢐ି૚࢔

ୀ૙࢏

ቍ. 

 
Now, we approximate ࢟ሺ࢞ሻ and ࢌሺ࢞ሻ by the 

shifted Legendre polynomials as  
 
ሺ࢞ሻെ෥ࡺ࢟ ∑ ࢏ࡼ࢏ࢉ

ࡺ
ୀ૙࢏ ሺ࢞ሻ ൌ  ઴ሺ࢞ሻ,                     (24)ࢀ࡯

 
ሺ࢞ሻെ෥ࢌ	 ∑ ࢏ࡼ࢏ࢌ

ࡺ
ୀ૙࢏ ሺ࢞ሻ ൌ  ઴ሺ࢞ሻ,                       (25)ࢀࡲ

 
where vector ۴܂ ൌ ሾ܎૙, ,૚܎ … ,  ሿ is known andۼ܎
܂۱ ൌ ሾ܋૙, ,૚܋ … ,  ሿ  is an unknown vector. Usingۼ܋
Theorem 1 an approximation solution of (24) can 
be written as 
 
ሺ࢞ሻࡺ࢟ࢻࡵ ൌ ઴ሺ࢞ሻࢻࡵࢀ࡯ ൌ  ઴ሺ࢞ሻ,                (26)ࢻ࡭ࢀ࡯
 
where ࢻ࡭ is defined in theorem 1. Employing Eqs. 
(24)-(26) the residual ࡺࡾሺ࢞ሻ for Eq. (23) can be 
written as 
 
ሺ࢞ሻࡺࡾ	 ൌ ሺࢀ࡯ െ ࢀ࡯ ∑ ሻ࢏ࢼିࢻሺ࡭࢏ࢇ

࢑
ୀ૚࢏ െ ሻࢻሺ࡭ࢀ࡯࢑ା૚ࢇ െ  (27)	઴ሺ࢞ሻ.	ሻࢀࡲ

 
As in a typical tau method (see [14]), we generate 

െࡺ 	࢔	 ൅ 	૚ linear algebraic equations by applying 
 
,ሺ࢞ሻࡺࡾ〉 〈࢐ሺ࢞ሻࡼ ൌ ׬ ࢐				,࢞ࢊ࢐ሺ࢞ሻࡼሺ࢞ሻࡺࡾ ൌ

૚
૙

૙, ૚,ڮ ࡺ, െ  (28)                                                    .࢔
 

For determining ࢏ࢉ we need ࢔ െ ૚ equations. 
Also, by substituting Eq. (24) in Eq. (21) we obtain 
 

࢟ሺ࢏ሻሺ૙ሻ ൌ ሻሺ࢞ሻ࢏઴ሺࢀ࡯ ൌ෍࢏ࡼ࢏ࢉ
ሺ࢏ሻሺ૙ሻ ൌ ,࢏ࢊ

ࡺ

ୀ૙࢏

			 

࢏	 ൌ ૙, ૚,ڮ , ࢔ െ ૚,                                             (29) 
 
where ࢏ࡼ

ሺ࢔ሻሺ૙ሻ is defined as follows 
 

࢏ࡼ
ሺ࢔ሻሺ૙ሻ ൌ

ሺି૚ሻ࢏శ࢔ሺ࢏ା࢔ሻ!

ሺ࢔ି࢏ሻ!࢔!
࢔						, ൑  (30)                       .࢏

 
Now, by solving this set of linear equation and 

determining the unknown coefficient of vector 
,࡯ ࢟ሺ࢞ሻ as in Eq. (24) can be calculated. 

5. Error analysis 

In this section an error analysis is given for our 
method. It is well-known that shifted Legendre 
polynomials ࢏ࡼሺ࢞ሻ form a complete ࡸ૛ሺΩሻ 
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orthogonal set [14], where ષ ൌ ሾെ૚, ૚ሿ. We recall 
that	࢓ࡴሺષሻ is the Sobolev space of all function 
࢛ሺ࢚ሻ on ષ such that ࢛ሺ࢚ሻ and all it’s weak 
derivatives up to order ࢓ are in ࡸ૛ሺષሻ and define 
‖.  ሺષሻ as࢓ࡴ‖
 

‖. ሺષሻ࢓ࡴ‖ ൌ ሺ෍ฮ࢛ሺ࢑ሻሺ࢚ሻฮ
૛ሺષሻࡸ

૛
࢓

࢑ୀ૙

ሻ
૚
૛	. 

 
The semi-norm also denoted by 

 

|. ሺષሻࡺ;࢓ࡴ|
૛ ൌ ෍ ฮ࢛ሺ࢏ሻሺ࢚ሻฮ

૛ሺષሻࡸ

૛
ࡺ

ሻࡺ,࢓ሺ࢔࢏࢓ୀ࢏

. 

 
Note that whenever ࡺ ൒ െ࢓ ૚, one has 

 
ሺષሻࡺ;࢓ࡴ|࢛| ൌ ฮ࢛ሺ࢓ሻฮ

૛ሺષሻࡸ
ൌ  .ሺષሻ࢓ࡴ|࢛|

 
Now, suppose ࢛ࡺ ൌ ∑ ෝ࢛࢑ࡼ࢑

ࡺ
࢑ୀ૙  is the truncated 

Legendre approximation of a function ࢛ א  ,ሺષሻ࢓ࡴ
Then, as has been proved in [14], the truncation 
error is 
 
‖࢛ െ ሺષሻࡺ;࢓ࡴ‖ࡺ࢛ ൑  ሺષሻ,               (31)ࡺ;࢓ࡴ|࢛|࢓ିࡺ࡯
 
where C is a positive constant depending on m. For 
our proposed method consider system (23) and let 
࢟ሺ࢞ሻ be the exact solution of this system. The 
truncation error ࡺࢋሺ࢞ሻ ൌ ࢟ሺ࢞ሻ െ  ሺ࢞ሻ, whereࡺ࢟
ሺ࢞ሻࡺ࢟ ൌ ∑ ࢑ࡼ࢑ࢉ

ࡺ
࢑ୀ૙ ሺ࢞ሻ is the truncated Legendre 

series of y, can be estimated as follows: 
 

ሺ࢞ሻࡺࢋ ൌ෍ࡺࢋ࢏ࢼିࢻࡵ࢏ࢇ

࢑

ୀ૚࢏

ሺ࢞ሻ ൅ ሺ࢞ሻࡺࢋࢻࡵ࢑ା૚ࢇ ൅  ,ሺ࢞ሻࢌࢋ

 
where ࢌࢋሺ࢞ሻ ൌ ሺ࢞ሻࢌ െ  ,ሺ࢞ሻ. Taking the normࡺࢌ
yields 
 

ሺષሻ࢓ࡴ‖ሺ࢞ሻࡺࢋ‖ ൑ 	෍ࡺࢋ‖࢏ࢼିࢻࡵ࢏ࢇሺ࢞ሻ‖࢓ࡴሺષሻ

࢑

ୀ૚࢏
൅ ሺષሻ࢓ࡴ‖ሺ࢞ሻࡺࢋ‖ࢻࡵ࢑ା૚ࢇ
൅  ሺષሻ࢓ࡴ‖ሺ࢞ሻࡺࢋ‖

൑෍࢏ࢇ

࢑

ୀ૚࢏

	
૚

ડሺࢻ െ ሻ࢏ࢼ
නฮሺ࢞ െ ࣎ሻି࢏ࢼିࢻ૚ࡺࢋሺ࣎ሻฮ࢓ࡴሺષሻ

࢞

૙

࣎ࢊ

൅ ࢑ା૚ࢇ
૚

ડሺࢻሻ
නฮሺ࢞

࢞

૙
െ ࣎ሻିࢻ૚ࡺࢋሺ࣎ሻฮ࢓ࡴሺષሻ

࣎ࢊ

൅ ฮࢌࢋሺ࢞ሻฮ࢓ࡴሺષሻ
 

൑ ࣎ࢊሺષሻ࢓ࡴ‖ሺ࣎ሻࡺࢋ‖නࡹ ൅ ฮࢌࢋሺ࢞ሻฮ࢓ࡴሺષሻ

࢞

૙

 

 
where M is a constant independent of x. Using (31) 
for sufficiently large N, the error ࢌࢋሺ࢞ሻ	is bounded 

for ࢞ א ષ 
 

ሺષሻ࢓ࡴ‖ሺ࢞ሻࡺࢋ‖ ൑ ࣎ࢊሺષሻ࢓ࡴ‖ሺ࣎ሻࡺࢋ‖නࡹ	

࢞

૙

൅  .ࡷ

 
Applying Gronwall's Lemma, we get 

 
ሺષሻ࢓ࡴ‖ሺ࢞ሻࡺࢋ‖ ൑ ࢞׊										,࢞ࡹࢋࡷ	 א ષ.	 

6. Illustrative examples 

To give a clear overview of this method, we present 
some illustrative examples. 
 
Example 1. As the first example, we consider the 
following initial value problem, 
 

ࡰ
૜
૛࢟ሺ࢞ሻ ൅ ࢟ሺ࢞ሻ ൌ ࢞૛ ൅ ૝ට

࢞

࣊
,								࢟ሺ૙ሻ ൌ ૙,     (32) 

 
whose exact solution is given by ࢟ሺ࢞ሻ ൌ ࢞૛. 

By applying the technique described in Section 
4.1 with N = 2, we may write the approximate 
solution as  
 

࢟ሺ࢞ሻ ൌ෍࢏ࡼ࢏ࢉሺ࢞ሻ ൌ ሺ࢞ሻࣘࢀ࡯

૛

ୀ૙࢏

,	 

ሺ࢞ሻെ෥ࢌ ∑ ሺ࢞ሻ࢏ࡼ࢏ࢍ ൌ ሺ࢞ሻ૛ࣘࢀࡲ
ୀ૙࢏ ,	                       (33) 

 
From Theorem 3, we have 
 

૜/૛࡭ ൌ
ૡ

√࣊

ۉ

ۈ
ۇ

૚

૚૞

૜

૜૞

૚

૟૜
ି૚

૜૞

ି૚

૝૞

૚

ૠૠ
૚

૜૚૞

ି૜

૜ૡ૞

ି૚

૚૚ૠی

ۋ
ۊ

ࡲ     , ൌ ቌ
૙ࢌ
૚ࢌ
૛ࢌ
ቍ.      (34) 

 
Therefore, using Eq.(28) we obtain 

 

૙ࢉ ൅
ૡ

√࣊
ቀ
૙ࢉ
૚૞
െ

૚ࢉ
૜૞
൅

૛ࢉ
૜૚૞

ቁ െ ૙ࢌ ൌ ૙,                     (35) 
 

૚ࢉ ൅
ૡ

√࣊
ቀ
૜ࢉ૙
૜૞
െ

૚ࢉ
૝૞
െ

૜ࢉ૛
૜ૡ૞

ቁ െ ૚ࢌ ൌ ૙.                   (36) 
 

Now, by applying Eq. (29), for the initial 
condition we obtain 
 
૙ࢉ െ ૚ࢉ ൅ ૛ࢉ ൌ ૙.                                               (37) 
 

Finally, by solving Eqs. (35)- (37) we obtain 
 

૙ࢉ ൌ
૚
૜
૚ࢉ					, ൌ

૚
૛
૛ࢉ				, ൌ

૚
૟
. 

 
Hence we can write 

 
࢟ሺ࢞ሻ ൌ ∑ ሺ࢞ሻ࢏ࡼ࢏ࢉ ൌ ࢞૛૛

ୀ૙࢏  , 
 
which is the exact solution.  
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Table 1

 
x 

0.1 1
0.2 9
0.3 4
0.4 1
0.5 2
0.6 2
0.7 1
0.8 4
0.9 2
1.0 6
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7. Conclusion 

We derived a general formula for the Legendre 
operational matrix of fractional integration. We 
have used this method to approximate the 
numerical solution of a class of fractional 
differential equations in Riemann-Liouville sense. 
Our approach was based on the properties of shifted 
Legendre polynomials. As we have seen in the 
illustrated examples, this method obtains a good 
accuracy of the solution. Moreover, only a small 
number of shifted Legendre polynomials are needed 
to obtain a satisfactory result. 
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