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Abstract

In this article we implement an operational matrix of fractional integration for Legendre polynomials. We
proposed an algorithm to obtain an approximation solution for fractional differential eguations, described in
Riemann-Liouville sense, based on shifted Legendre polynomials. This method was applied to solve linear multi-
order fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated
examples. Numerical results reveal that this method gives ideal approximation for linear multi-order fractional

differential equations.
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1. Introduction

Many problems in various fields can be
successfully modeled by fractional differential
equations, such as theoretical physics, biology,
viscoelasticity, electrochemistry and other physical
processes. In the last decade, fractional differential
equation has attracted the attention of
mathematicians, physicists and engineers [1, 2].
Therefore, the accurate methods of solving
fractional differentiad equations (FDES) are a
challenging research these days. There are several
analytic methods such as Adomian decomposition
method [3], variational iteration method [4] and
homotopy perturbation method [5]. There are also
many numerical methods introduced for solving
FDEs in literature. Podlubny introduced a
numerical method for arbitrary order derivative
based on the relationship between the Griinwald-
Letnikov and Riemann-Liouville derivative [2].
Diethelm et al. has presented predictor-corrector
method for numerical solution [6] and also Erjaee et
a. have shown good results in numerical method
[7]. Recently solving FDEs using orthogonal
polynomials have aso received considerable
attention. Using this method reduces the differential
equation to a system of algebraic equations. The
operational matrix of fractional derivative has been
determined for some type of orthogonal
polynomials such as Chebyshev polynomials [8]
and Legendre polynomials [9]. Paraskevopoul os
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has suggested the operational matrix of integration
by using these polynomials as a basis in ODEs [10,
11]. Recently, Bhrawya and Alofi [12] derived the
operational matrix of fractional integration for
shifted Chebyshev polynomials.

In the present article, we extend the application of
Legendre polynomials for solving FDEs along the
line of Riemann-Liouville. For this purpose we first
write the FDEs in the integra form. Then we
convert this integral equation to an agebraic
equation system by using the L egendre polynomials
similar to the operationa matrix of fractiona
integration. Now, by solving the resultant algebraic
equations, we obtain an approximation analytical
solution for the FDEs.

The article is organized as follows. We start by
introducing some necessary definitions and
preliminaries for fractional calculus and Legendre
polynomials. In Section 3, we state and prove the
main result of this article, which gives a matrix
form for fractional integration. In Section 4, we
apply our method for solving linear multi-order
FDEs. In Section 5, we illustrate several examples
and we come up with a conclusion in Section 6.

2. Preliminaries and notations

There are several definitions of fractional derivative
and integral such as Caputo, Griinwald-Letnikov
and Riemann-Liouville. These definitions are not
necessarily equivalent in different sense [2]. Here,
we state fractional differential operator in the
Riemann-Liouville sense.
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Definition 1. The Riemann-Liouville fractiona
integral operator of order > 0, of a function f(x),
is defined as

I“f(x) = mfo (x - f(®dt.a>0x>0, (1)

I°f(x) = f(20).
Properties of the operator I* can be found in [11],
we just mention the following property

Ay — Tr+1) _a+y
I I‘(a+y+1)x (2)

The Riemann-Liouville fractional of order a will
be denoted by D%and defined by

DUf(x) = < (I"*f (x), )

where m—1<a<mmeN and m is the
smallest integer order greater than a.

Lemmal.ifm—1< a<m,mEe€ N, then

DI (x) = f(),
I"Df(x) = f(x) - Ii' FO(OH T, x> 0. 4

Shifted Legendre polynomials

Let P;(x);x € (0,1) be the shifted Legendre
polynomials. Then P;(x) can be obtained as
follows:

2i+1)(2x-1
Piy(x) = 2D () - L

+D) l—l(x)! i=
12,.. (5

where Py(x) =1 and Py(x)=2x-—1. The
analytic form of the shifted Legendre polynomial
P;(x) of degreei given by

i+k)!x
Pi(x) = Bh_o(—1)k L (©)

where P;(0) = (-1)! and P;(1)=1. The
orthogonality condition is
1 1 =
Jy Pi(x)P;(x) dx = {zm - @
0 i#j.

A function y(x), square integrable in [0, 1], may
be expressed in terms of shifted Legendre
polynomials as

[ee]

y(x) = Z c;iP; (x),

i=0

where the coefficients c¢; are given by
¢ =Qi+1) [, yoPdx, i=12,.. (8

In practice, only the first (N + 1) terms shifted

Legendre polynomials are considered. Therefore
y(x) can be written in the form

yn(O=Zio P (x) = CT@(x), 9)

where the shifted L egendre coefficient vector C and
the shifted Legendre vector ®(x) are given by

CT = [COI C1, "'lCN]'
d)(x) = [POJPI' ...,PN]T. (10)

If we define the v times repeated integration of
Legendre vector ®(x) by I'®(x), (see[11]), then

I"'®(x)=A®(x), (11)

where vis an integer value and A" is the
operational matrix of integration of @(x). More
details are presented in [11].

3. Operational Matrix of Fractional I ntegration

In this section we generalized the shifted Legendre
operational matrix (SLOM) of integration (11) for
fractional calculus.

Theorem 3. Let &(x) be a shifted Legendre
polynomial then

I"®(x)=AP(x), (12

where A” is the (N +1) x (N + 1) operationa
matrix of integration of order v in the Riemann-
Liouville sense and is defined as follows:

2220 f0,0,k 2220 f(),l,k . Zgzo fO,N,k
lelzo.fl,o,k lelzo.fl,l,k . Zi:o.fl,N,k

AY = o o o . (13
Zk:o.fi,o,k Z;c=0.fi,1,k Z;c=0.€i,N,k (13)

25:0 fN,O,k 25:0 fN,l,k . Zgzo fN,N,k
where

()G ) 114!
Sijk =@+ 1) Zl =0 (i—k)k!(k+a+1) G—D!(ID2 (k+l+a+1)’ (14)

Proof: Having the analytic form of the shifted
Legendre polynomials (6) and using Egs. (1) and
(2) gets

_ [ G o) k
I“Pl(x) Zk 0 = k)'(k‘)z Ia( )
(—1)l+k(l+k)‘ a+k

= X0 (-l Tkta+D) (15)
i=01,.,N

Now, approximate x**k by (N +1) terms of
shifted Legendre seriesyields

xek = Z} Oak]P] (x) (16)
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where
1
a; = (2j + l)f x*tk p;(x)dx
0

Jj .
. CDHG+DL L,
_(21+1); G=D1 )z J;x dx
s j (—DHLG+D)!
=@+ 1Y, G-D!AD2(k+l+a+1)" 17)

Now, by employing Egs. (15)-(17) we obtain

i N )
a ~ (1)@ + k)!
! Pi(x)_z Z = kTkTa+D %P®
k=0j=0
= Z}LO(ZLQ fi,j,k) Pi(x), i=0,1,..,N, (18

where §;;, is given in Eq. (14). Writing the last
equation in avector form gives

i i i
Z Siojr Z Sithr Z fi,N,kl P(x),
=0 =0 =0

i=0,1,..,N, (19)

I°P;y(x)=

which produces the desired result.

4. Application of the operational matrix in
fractional integral

Now, we are ready to apply the SLOM method to
the fractional integration. Here, we apply the
method to a multi-order fractiona differentia
equation in the Riemann-Liouville sense. So, let a
to be the highest fractional order of FDE. Then by
employing properties of fractional integral we can
write the FDE as an integra equation of order a.
Now by using operational matrix we approximate
the resultant integral equation.

Consider the following linear multi-order FDE

D% (x) = T, a;DPiy(x) + a1 1%y(x) = g(x), (20)
with initial conditions

yd0)=d;, i=01-,n-1, (21)
where a; (j=1,--,k+1) ae rea constant
coefficients and adso n—1<a<n0<pB<
B: << PBr <a and D% denote the Riemann-
Liouville fractional derivative of order a. For the
existence, uniqueness and continuous dependence
of the solution to the problem, see [13]. To solve
problem (20) and (21) we apply the Riemann-
Liouville integral of order a¢ on (20) and using
Lemma.l to get

y(x) - 2 y @)% =
— P ._1 i i
Sk a1 (y) - 52 yO (0 %) +
1 1%y (x) + 1%g(x), (22)

y90)=d;, i=01,,n—-1,

wheren; — 1 < « < n;, n; € N. Hence

y(x) = TS a1 Py (x) + ap 1 Iy(x) + f(0), (23)
y®0)=d;, i=01,-,n—-1,

where

n-1 .k nj-1 .
xt xt

f(x) =I“g(x)+2diﬁ+2a]-1“‘ﬁi Z digr |
i=0 =} i=0 '

Now, we approximate y(x) and f(x) by the

shifted Legendre polynomials as
yn@)=TociP; (x) = CT0 (%), (24)
fO=ZofiPi (x) = FT® (), (25

where vector FT = [fy,f;,...,fy] is known and
CT = [cg, €4, ..., cy] is an unknown vector. Using
Theorem 1 an approximation solution of (24) can
be written as

I%yy(x) = CTI*®(x) = CTA“®D(x), (26)

where A% is defined in theorem 1. Employing Egs.
(24)-(26) the residua Ry(x) for Eq. (23) can be
written as

Ry(x) = (€7~ "Ik, @, AP0 — a3, CTA© — FT) @ (). (27)

Asin atypical tau method (see [14]), we generate
N — n + 1 linear adgebraic equations by applying

(Ry(x), Pj(20)) = [} Ry(0)P;(x)dx, j =
0,1,-,N —n. (28)

For determining ¢; we need n—1 equations.
Also, by substituting Eq. (24) in EQ. (21) we obtain

N
yO(0) = "eOw®) = > cPP(0) = d,
i=0
i=01,-,n—1, (29)

where P{™ (0) is defined as follows

(n) _ (D) (i+n)! ,
P(0) =— i msi (30)
Now, by solving this set of linear equation and
determining the unknown coefficient of vector

C,y(x) asin Eq. (24) can be calculated.

5. Error analysis

In this section an error analysis is given for our
method. It is well-known that shifted Legendre
polynomias P;(x) form a complete L%(Q)
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orthogonal set [14], where @ = [—1, 1]. We recall
that H™(Q) is the Sobolev space of al function
u(t) on Q such that u(t) and al it's weak
derivatives up to order m are in L?(Q) and define
I 1l jm a8

m
1
-y = O @@z )7
k=0

The semi-norm also denoted by

N

; 2
|. |im;N(Q) = Z ||u(l)(t)||L2(ﬂ)

i=min(m,N)

Note that whenever N > m — 1, one has
|u|H’";N(.().) = ”u(m)”LZ(Q) = |u|Hm(9)'

Now, suppose uy = Y N_o Py, is the truncated
Legendre approximation of a function u € H™(Q),
Then, as has been proved in [14], the truncation
error is

[l - uN”H’"iN(g) < CN_mlulym;N(m: (31

where C is a positive constant depending on m. For
our proposed method consider system (23) and let
y(x) be the exact solution of this system. The
truncation error ey(x) = y(x) — yy(x), where
yn(x) = XN_o ckPy (x) is the truncated Legendre
series of y, can be estimated as follows:

k
en(®) = ) @l Piey () + ayalen(®) + e,x),
i=1
where ef(x) = f(x) — fy(x). Taking the norm,
yields
k
lenllamay < ad*Pillen()lluma)
i=1
+ @11l (0 llmca)
+ lley ()l gmq)
k x
1 e
= Z ECET D) of”(x ~ D e @l 47

i=1

1 x
+ ak+1@f||(x
0
=0 en (0| yn g, 47
e @l

X
< M [llew @ llamaydt + e/l gy,
0

where M is a constant independent of x. Using (31)
for sufficiently large N, the error ef(x) is bounded

forx € Q

X
len (O llymy < M f llew (@) llmeayd + K.
0

Applying Gronwall's Lemma, we get

llexy()llgm@y < Ke™™, vx € Q.

6. lllustrative examples

To give aclear overview of this method, we present
some illustrative examples.

Example 1. As the first example, we consider the
following initial value problem,

Dry(0) +y(0) =22 + 4 ﬁ y0) =0, (32)

whose exact solution is given by y(x) = x2.

By applying the technique described in Section
4.1 with N = 2, we may write the approximate
solution as

2
y() = ) ePi(x) = CTo()
i=0
f= 320 giPi®) = FT(x), (33

From Theorem 3, we have

(i 3 1

15 35 63 fO

3281 1 i) =

A ~Vm| 35 a5 77 | F=(f1) 4
R -_1/ f2

315 385 117

Therefore, using Eq.(28) we obtain

8 (4] c1 c2 _
C°+\/_E(E_E+E)_f°_0’ (35)

8 (3co c1 3¢ _
C1+\/_1—1(¥_E_ﬁ)_f1_0' (36)

Now, by applying Eg. (29), for the initia
condition we obtain

Cop —Cq + Cy = 0. (37)
Finally, by solving Egs. (35)- (37) we obtain

1 1 1
5, C1 = E, Cy = —.

6
Hence we can write

y(x) = Zizzo c;Pi(x) = x2,

which is the exact solution.

Co =
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Table 1. Absolute error for & = 0.85 in Example 2

X N=2 N=4 N=6

01 19x 1072 77x 107* 25x 1073
02 95x 103 52x 1073 73x 10°*
03 42x 1073 24x 103 21x 1073
04 16x 1072 25x 103 35x 107*
05 23x 1072 52x 1073 22x 1073
06 24x 1072 37x 1073 70x 107*
07 16x 1072 14x 103 21x 1073
08 49x 107* 62x 103 13x 1073
09 26x 1072 37x 103 30x 1073
10 63x 1072 16x 1072 79x 1073

Example 2. We consider the following initial value
problem,

D*y(x)+y(x) =0, 0<a<2 (38)
y(0)=1, y'(0)=0.

The second initial condition is for a@ > 1 only.
The exact solution of this problem is as follows
[13]:

(—x9)*

YO =2 Tak+ 1)
k=0

By applying the technique described in Section 4
and solving this problem, the absolute error for
a = 0.85 and N=2, 4 and 6 are shown in Table 1.
In Table 1, we see that a good approximation
solution can be achieved by taking a few terms of
shifted Legendre polynomials. These results are
similar to those counterparts resulted in [9]. The
numerical results for y(x) with N =4 and a =
0.75,0.85,0.95 and 1 areillustrated in Fig. 1.

104

0.9 =

= = o), 75 = cxp(-x) = * =095 =085

08 -

06 |

0%~

04 -

Fig. 1. Comparison of y(x) for different a and N=4 in
Example 2

For a =1, the exact solution is given by
y(x) = exp(—x). Note that as a approaches 1, the
numerical solution converges to the analytical
solution y(x) = exp(—x). That isin the limit, the
solution of the fractional differentia equations
approaches to the solution of ordinary differential

equations as & — 0. Moreover, we present results
for a > 1. Fig. 2 shows the numerical results for
y(x) for- N=4 and a =1.5,1.75,1.95 and 2.
For a = 2, the exact solution is given as y(x) =
cos(x). Similar to the previous case, from Fig. 2,
we see that when a approaches 2, the numerical
solution converges to the solution of ordinary
differential equation.

Fig. 2. Comparison of y(x) for N=4 with a=
1.5,1.75,1.95in Example 2

Example 3. Consider the equation

D?y(x) — aD{y(x) —by(x) =8, x>0,
0<a<?2 (39

with theinitial condition

y(0)=0, y'(0)=0.

Suppose in specia casea = b = —1, using the
method described in Example 1 with N = 4 the
approximate solution for & = 0.5 and 1.5 can be
obtained. Numerical results are given in Table 2 by
comparison with the exact solution. The exact
solution refers to the closed form series solution
presented in [15]. Table 2 shows a good numerical
approximation solution with the exact solution.

Table 2. Numerical results with comparison to exact
solution Example 3

a=05 a=15
X Our Exact Our Exact
method sol. method sol.

0.0 0.000000 0.000000 0.000000  0.000000
0.1 0.039995 0.039750 0.032615 0.125221
0.2 0157331 0.157036 0.124678  0.033507
0.3 0.347274 0.347370 0.268427  0.267609
04 0.604066 0.604695 0.457321  0.455435
05 0920928 0.921768 0.686033  0.684335
0.6 1.290060 1.290457 0.950455  0.950393
0.7 1702643 1.702008 1247710  1.249959
0.8 2148833 2.147287 1576113 1.579557
0.9 2617766 2.617001 1935220 1.935832
1.0 3.097559 3.101906 2.325795  2.315526
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7. Conclusion

We derived a general formula for the Legendre
operational matrix of fractional integration. We
have used this method to approximate the
numerical solution of a class of fractiona
differentia equations in Riemann-Liouville sense.
Our approach was based on the properties of shifted
Legendre polynomias. As we have seen in the
illustrated examples, this method obtains a good
accuracy of the solution. Moreover, only a small
number of shifted Legendre polynomials are needed
to obtain a satisfactory result.
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