
IJST, Transactions of Electrical Engineering, Vol. 37, No. E1, pp 79-92
Printed in The Islamic Republic of Iran, 2013
© Shiraz University

AN ADAPTIVE MULTI-OBJECTIVE ARTIFICIAL BEE COLONY
WITH CROWDING DISTANCE MECHANISM*

S. A. R. MOHAMMADI1, M. R. FEIZI DERAKHSHI2 AND R. AKBARI3**
1Dept. of Information Technology, Tabriz University, Tabriz, I. R. of Iran,

2Dept. of Computer Science Tabriz University, Tabriz, I. R. of Iran,
3Dept. of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, I. R. of Iran

Email: akbari@sutech.ac.ir

Abstract– Artificial Bee Colony (ABC) is one of the recently introduced optimization methods
based on intelligent behavior of honey bees. In this work, we propose an Adaptive Multi-Objective
Artificial Bee Colony (A-MOABC) Optimizer which uses Pareto dominance notion and takes
advantage of crowding distance and windowing mechanisms. The employed bees use an adaptive
windowing mechanism to select their own leaders and alter their positions. Besides, onlookers
update their positions using food sources presented by employed bees. Pareto dominance notion is
used to show the quality of the food sources. Those employed or onlooker bees which find food
sources with poor quality turn into scout bees in order to search other areas. The suggested method
uses crowding distance technique in conjunction with the windowing mechanism in order to keep
diversity in the external archive. The experimental results indicate that the proposed approach is
not only thoroughly competitive compared to other algorithms considered in this work, but also
finds the result with satisfactory precision.

Keywords– Multi-objective optimization, artificial bee colony, crowding distance, windowing mechanism

1. INTRODUCTION

Some kinds of optimization problems which are common in engineering have more than one objective. As

we do not have a single solution for these sorts of problems, our goal is to find a set of solutions that

represents a trade-off or balance between the objectives.

Different types of multi-objective optimization techniques have been proposed in literature. However,

most of the multi-objective techniques, specially the recent ones, have been designed based on the notions

such as Pareto-optimality and non-dominated solutions. These techniques are so-called Pareto-based

methods which are described as follow:

Assume that we have a ࡰ-dimensional search space ࡿ. A multi-objective optimization problem tries

to solve ࢑ conflicting objective functions simultaneously:

࢏࢟ ൌ ሬሬԦሻ (1)࢞ሺ࢏ࢌ

where ࢞ሬሬԦ ൌ ሺ࢞૚, …,૛࢞ , The objective functions may .ࡿ dimensional vector in the search space-ࡰ ሻ is aࡰ࢞
be constrained or unconstrained. A constrained objective function should be optimized subject to the ࢓
constraints:

ሬሬԦሻ࢞ሺ࢒ࢉ ൒ ૙,						૚ ൑ ࢒ ൑ (2) ࢓

Received by the editors November 4, 2012; Accepted March 3, 2013.
Corresponding author

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

80

Mathematically, a maximization problem can be simply converted to minimization. Hence, it can be
assumed that objective functions should be minimized. By this assumption, the multi-objective
optimization problem can be formulated as follows:

࢟		ࢋࢠ࢏࢓࢏࢔࢏ࡹ ൌ ሬሬԦሻ࢞ሺࢌ ൌ ൫ࢌ૚ሺ࢞ሬሬԦሻ, ,ሬሬԦሻ࢞૛ሺࢌ … , ሬሬԦሻ൯ (3)࢞ሺ࢑ࢌ

subject to:

ሬሬԦሻ࢞ሺࢉ ൌ ൫ࢉ૚ሺ࢞ሬሬԦሻ, ,ሬሬԦሻ࢞૛ሺࢉ … , ሬሬԦሻ൯ (4)࢞ሺ࢓ࢉ

In the multi-objective optimization, we have two or more conflicting objectives. Also, the multi-objective
problems have more than one solution. Based on these, improving an objective is not possible unless at
least one of the other conflicting objectives is sacrificed. The possible best results of the conflicting
objectives are called Pareto-optimal set. A multi-objective optimization method tries to find the Pareto-
optimal set. However, due to the complexities of the multi-objective problems, most of the algorithms
have difficulty to find the true Pareto-optimal set. Hence, they try to find the Pareto-front. The Pareto-
optimality is based on the dominance notion. For every two solution vector ࢠሬԦ૚ and ࢠሬԦ૛, it is said that ࢠሬԦ૚
dominates ࢠሬԦ૛ (denoted as ࢠሬԦ૚ ≺ :ሬԦ૛) iffࢠ

ሬԦ૚ሻࢠሺ࢏ࢌ ൑ :࢏∀						ሬԦ૛ሻࢠሺ࢏ࢌ ૚ ൑ ࢏ ൑ (5) ࢑

ሬԦ૚ሻࢠሺ࢏ࢌ						࢏∃ ൏ (6)	ሬԦ૛ሻࢠሺ࢏ࢌ

Usually, the Pareto-based approaches maintain a set of non-dominated solutions in an external archive. A
set of solutions ࢂ is known as a non-dominated set if every two solution members ࢜ሬሬԦ૚ and ࢜ሬሬԦ૛ do not
dominate each other:

࢏ሬሬԦ࢜ ⊀ ,࢏∀								࢐ሬሬԦ࢜ ૚					:࢐ ൑ ,࢏ ࢐ ൑ (7) ࡴ

where ࡴ is the number of solution vectors. It is very difficult to determine the optimal Pareto-front due to
the computational complexities and memory constraints. Hence, the meta-heuristic methods are preferred
to solve the multi-objective optimization problems.

ABC is known as one of the meta-heuristic methods recently introduced by Karaboga and Basturk.
The bee algorithms have been used in different fields of engineering [1]. In this work, the standard ABC is
extended and an adaptive multi-objective ABC is introduced. In the proposed A-MOABC method, the
population is divided into three different kinds of bees and an external archive is used to keep appropriate
solutions. The leaders for each of the employed bees are chosen from this external archive to update their
trajectories. A crowding distance technique is also used for non-dominated solutions in the external
archive to estimate the density of solutions around it 3, 4]. The employed bees use a windowing
mechanism to select their own leader [5]. The Onlookers use this information, which is found by the
employed bees to adjust their trajectories. The proposed method is applied on a set of well-known multi-
objective problems and compared with some state-of-the-art techniques.

The rest of this paper is organized as follows. A survey on the multi-objective methods is given in
Section 2. In Section 3, the proposed algorithm is described in detail. The obtained experimental results
are discussed in Section 4. Finally, Section 5 concludes this work.

2. LITERATURE SURVEY

In recent years, many population-based techniques such as multi-objective evolutionary algorithms

(MOEAs), multi-objective particle swarm optimization algorithms (MOPSOs) and multi-objective

artificial bee colony algorithms (MOABCs) have been designed for optimizing problems with more than

one objective. Most studies on multi-objective optimizations concentrated on the Pareto-based approaches

An adaptive multi-objective artificial bee colony…

June 2013 IJST, Transactions of Electrical Engineering, Volume 37, Number E1

81

and because of computational complexity, notable consideration is given to the evolutionary search

methods to optimize multi-objective problems 6. Pareto-based approaches select non-dominated solutions

based on the concept of Pareto dominance. These selected solutions are usually kept in an external archive

[7- 11].

Genetic Algorithms (GA) [12], Evolution Strategy (ES), Differential Evolution (DE), and Particle

Swarm Optimization (PSO) have been used to design different classes of multi-objective optimization

methods. These algorithm have been widely used and successfully extended to cope with the problems

with more than one objective. Some interesting surveys on these methods have been presented in [13-16].

Reyes-Sierra and Coello Coello have presented a useful survey on the variants of PSO for multi-objective

optimization [14]. In their study, PSO methods were categorized into six classes: aggregating,

lexicographic, sub-population, Pareto-based, combined, and other approaches. The works presented in

[17- 20] are some of the representative multi-objective PSO methods. The variants of DE for multi-

objective optimization problem have been considered by Mezura-Montes et al. in [13]. Based on their

study, the variants of DE can be categorized as non-Pareto-based, Pareto-based using Pareto dominance or

Pareto-ranking notions, and combined approaches. A categorization of multi-objective optimization

methods for engineering problems has been given by Marler and Arora in 15]. Finally, a comprehensive

survey of evolutionary-optimization based methods has been presented by Coello Coello in [16]. His work

suggests that the evolutionary algorithms for handling multi-objective problems can be categorized as

approaches that use aggregating functions, approaches not based on the notion of Pareto optimum, and

Pareto-based approaches.

One of the most recently introduced evolutionary methods is Artificial Bee Colony (ABC) 21]. ABC

algorithm can find solutions with great accuracy and it also has a satisfactory convergence speed in the

single objective problems. These advantages could make this algorithm suitable for multi-objective

optimizations. ABC has received much attention in recent years. It has been applied on many engineering

problems. Due to the efficiency of ABC method, it has been extended by researchers to cope with multi-

objective problems. The standard ABC has been used by Hedayatzadeh et al. to design multi-objective

artificial bee colony (called MOABC) 11]. The MOABC is a Pareto-based approach which extends the

standard ABC by employing an external archive. MOABC uses the ߝ-domination notion to maintain the

non-dominated solutions in the archive. The performance of MOABC on a CEC’09 data sets has been

investigated by Akbari et al. in [7]. Their study showed that the Pareto-based version of MOABC provide

competitive performance compared to the other state-of-art algorithms. The concepts from the standard

ABC have been used by Akbari and Ziarati to design a multi-objective bee swarm optimization algorithm

(called MOBSO) [5]. The MOBSO has the ability to adaptively maintain an external archive of non-

dominated solutions. Another multi-objective variant of ABC that uses the concept of Pareto-dominance

and maintains the non-dominated solutions in an external archive presented in [22]. Some applications of

multi-objective variants of ABC have been presented in [23- 25]. A multi-objective technique for

optimization of laminated composite components has been designed based on Vector Evaluated ABC

(VEABC) [23]. A hybrid multi-objective ABC (HMABC) has been used by Zhang et al. for burdening

optimization of copper strip production 24]. Their method solves a two-objective problem where the total

cost of materials is minimized and the amount of waste material thrown into melting furnace is

maximized. Also, a multi-objective variant of ABC (called MO-ABC) has been used to solve a real world

frequency assignment problem in GSM networks [25].

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

82

3. THE PROPOSED METHOD

The proposed method is based on ABC algorithm. The population is divided into three different types of
bees: employed, onlooker and scout bees. The employed bees find solutions or food sources and then
present the positions and qualities of these food sources to the onlooker bees. Each of the onlooker bees
decides to follow two of the employed bees according to the information received from employed bees.
Also, the scout bees will explore the area randomly to find a new food source.

The pseudocode of the A-MOABC is given in Fig. 1. The A-MOABC is a Pareto-based algorithm,
which keeps the non-dominated solutions in an external archive. This algorithm consists of four main
parts: initialization, update bees, update the archive, and termination.

a) Initialization

In this phase, a variable FoodNumber is defined which stores number of food sources. The number of
each group of employed bees and onlooker bees is set to the half of FoodNumber variable. There is also a
trial variable which is defined and is used when one of the employed bees could not find a suitable source
after a specific number of cycles that is defined by trial variable. If the cycles for each onlooker bee
exceeded this limit, that onlooker bee turns into a scout bee. Each food source is initialized with the
following equation:

௜ௗݔ ൌ ௗ݊݅ܯ ൅ ௗݔܽܯሾ଴,ଵሿሺݎ െ݊݅ܯௗሻ (8)

where ࢏࢞is a D dimensional vector, ࢘ሾ૙,૚ሿ is a random coefficient drawn from a normal distribution and
 respectively. The archive ࢊ represent minimum and maximum values along dimension ࢊ࢔࢏ࡹ and ࢊ࢞ࢇࡹ
size ࡭ࡿ is also adjusted in the initializing phase.

b) Update mechanism

Each of the employed bees uses the external archive, which contains the best solutions found so far to

update food sources. For this purpose each employed bee i would select two leaders from the archive to
compute a temporary position called vi. One of the leaders is selected by windowing mechanism and the
other one is selected randomly. The reason behind selecting two types of leaders is that one of them which
is selected by windowing mechanism will guide the employed bees to converge to the sparse parts of the
Pareto set and the other one will help the employed bees to preserve diversity of search process over the
solution space. One of the dimensions of the position vi that is vid is updated by the following equation:

௜ௗݒ ൌ ௜ௗݔ ൅ ௜ௗݔሾିଵ,ଵሿሺݎଵݓ െ ௞ௗሻݔ ൅ ௜ௗݔሾିଵ,ଵሿ൫ݎଶݓ െ ௝ௗ൯ (9)ݔ

where i represents the food sources which are going to be optimized, ࢑, ࢐ ∈ ሼ૚, ૛, … , ࢊ ሽ and࡭ࡿ ∈
ሼ૚, ૛, … ሽ are randomly chosen indices. It should be noticed that k has to be different from i. Index j willࡰ,

be selected with windowing mechanism. The coefficients w1 and w2 indicate which of the leaders should

have a greater influence in guiding the employed bees.

After computing vi, the values of objective functions will be calculated. If the result dominates the old

values, the new one will replace the old values and positions, otherwise the trial value is incremented by

one.

The employed bees select one of their leaders with the windowing mechanism. The windowing

mechanism was used by Akbari and Ziarati 5]. An employed bee chooses her leader with a probability pk

as follows:

௞ܲ ൌ
௙൫௫Ԧಲ,ೕ൯

∑ ௙൫௫Ԧಲ,ೖ൯
ೄಲ
ೖసభ

 (10)

An adaptive multi-objective artificial bee colony…

June 2013 IJST, Transactions of Electrical Engineering, Volume 37, Number E1

83

where j is the index of an archive member and n is the number of archive members, ࢌ൫࢞ሬሬԦ࢐,࡭൯ is the fitness
value of the food source proposed by the archive member j which it depends on number of archive
members around its neighborhood and is calculated as follows:

݂൫ݔԦ஺,௝൯ ൌ 1
஺ܰ,௝

ൗ (11)

where ࢐,࡭ࡺ indicates number of members around the archive member j. To calculate neighbors, an
adaptive windowing mechanism is used. Placing each archive member in the center of a window does this.
The window length in i-th objective dimension is calculated as follows for a MOO problem with n
objectives:

݈௜ ൌ
|ெ௔௫೔ିெ௜௡೔|

ௌಲ
, ݅ ∈ ሼ1,2, … , ݊ሽ (12)

where ࢏࢞ࢇࡹ and ࢏࢔࢏ࡹ respectively presents the maximum and minimum values of the i-th objective
function. The ܒ,ۯۼ for the archive member j can be defined as the number of archive members existing in
its local window. The roulette wheel approach is used for selecting a suitable archive member as a leader.

After employed bees finish optimizing their food sources, they come back to the hive and share their
information with onlooker bees. Each of the onlooker bees chooses one of the food sources announced by
the employed bees according to their probabilities. The probability of food source k is calculated as:

௞ܲ ൌ
௙ሺ௫Ԧೖሻ

∑ ௙ሺ௫Ԧ೘ሻ
ಷ೚೚೏ಿೠ೘್೐ೝ
೘సభ

 (13)

where ࢌሺ࢞ሬሬԦ࢓ሻ is the fitness of the food source m. The fitness is calculated as the number of food sources
that are dominated by the food source m divided by FoodNumber. In other words, it can be stated
mathematically as:

݂ሺݔԦ௠ሻ ൌ
ௗ௢௠ሺ௠ሻ

ி௢௢ௗே௨௠௕௘௥
 (14)

where function ࢓࢕ࢊሺ࢓ሻ returns the number of food sources dominated by food source m.
The onlookers use the roulette wheel approach in order to choose a food source presented by the

employed bees. After onlookers select food sources, they calculate their new positions. If the new solution
dominates the old one, then the position will be updated. This process is formulated as:

௜ௗݒ ൌ ௜ௗݔ ൅ ௜ௗݔሾିଵ,ଵሿሺݎଷݓ െ ௞ௗሻ (15)ݔ

where coefficient ࢝૜ controls the influence of information provided by an employed bee k.

After sending onlooker bees, the algorithm checks if any poor quality food sources exist to replace
them with new ones. If the trial limits of any food sources are exceeded then scout bees try to find new
ones by reinitiating them. If the old food source is dominated by the new one then it is replaced. The
reinitiating formula is like the Eq. (1). This phase has two advantages, one is that the algorithm could get
rid of poor quality food sources and the other is that it could avoid trapping the algorithm into the local
optimum. The pseudo-code of this function is shown in Fig. 1.

c) Update archive

A fixed size archive is considered for this algorithm to hold the best non-dominated solutions. At
first, we check solutions to see if they are feasible and satisfy all constraints. If a food source satisfies all
constraints, it is a potential candidate to be stored in the archive and if it is not dominated by all the
solutions in the archive it will be inserted into the archive. In this process if the food source dominates any
solutions, those solutions will be deleted from the archive. We may face two situations in inserting
candidate food sources into the archive. The first one is that we have enough places in the archive to insert
candidate food sources. There is no problem with this situation but the problem occurs in another case.

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

84

The second one is that we have no place to insert candidate food sources, so we should use a technique to
select a victim from the archive and replace the new solution with that victim. This algorithm uses
crowding distance technique to overcome this problem.
__

Adaptive MOABC
 Initialization
 While (termination condition is not met)
 Call Send_Employed_Bees();
 Call Send_Onlooker_Bees();
 Call Send_Scout_Bees ();
 Call Update_Archive ();
 Call Crowding_distance ();
 End While
 Return Archive
……

Function Send_Employed_Bees()
 For i = 1 to FoodNumber
 Select a parameter d randomly
 Select Neighbor k from the archive randomly
 Select Neighbor j from the archive with windowing
 mechanism
 Calculate vid using (5)
 If the new food source dominates the old one
 Update the position
 End If
 If the food source has not been improved

 Increment its Trial by 1
End If

 End For

……………………………………………………………...............

Function Send_Onlooker_Bees()
Calculate probabilities for each food source
For i = 1 to FoodNumber
 Select a parameter d randomly
 Select Neighbor k from food sources randomly
 Calculate vid using (11)
 If the new food source dominates the old one
 Update the position
 End If
 If the food source has not been improved
 Increment its Trial by 1
 End If
End For

……………………………………………………………………...

Function Send_Scout_Bees ()
For i = 1 to FoodNumber

If i exceeds maximum Trial
 xi= initiate(i, S)
 Triali = 0
End If

End For

Function Update_Archive ()
Set insertFlag = true
For i = 1 to FoodNumber
 If archive is empty
 Insert particle in pop into archive
 End If
 If archive is not empty
 For each particle in archive
 If both particles are infeasible
 Delete particle in archive
 Set insertFlag = false
 End If
 If particle in pop is infeasible
 Set insertFlag = false
 End If
 If particle in archive is infeasible
 Delete particle in archive
 End If
 If both are feasible
 If bee in pop dominates
 Delete particle in archive
 End If
 If bee in archive dominates
 Set insertFlag = false
 End If
 End If
 If insertFlag
 If archive is not yet full
 Insert particle in pop into archive
 End If
 If archive is full
 Select a victim by crowding distance
technique
 Replace bee in pop with selected victim in
archive
 End If
 End If
 End For
End For

…………………………………………………………………...

Function Crowding_distance ()
Initialize distance for every solution in archive to zero
For each objective m
 Sort archive members by that objective
 For each archive member i
 Compute distancei = distancei+ ArcMemberValue(i+1)m -
ArMemberValue(i-1)m

 End For
 Set distanceo= distancearcSize = maximum distance
End For

__

Fig. 1. Pseudocode of the adaptive MOABC

June 2013

The es
described i
estimation o
description
ascending o
the average
are given to
we do not
summation

d) Termina

There are
evaluation,
evaluations
evaluations.

This section
the other 14
IGD measur

a) Performa

IGD me
proposed al
uniformly d
Pareto front

where ࢊሺࣖ,
Both the div

b) Settings

The pr
Some of th

stimation of
n 3, to calc
of the cuboid
more illust

objective fun
 distance of

o the bounda
sacrifice bo

of its crowdi

tion

different typ
etc. that can
as the termi

. After termi

n presents th
4 multi-obje
re.

ance metrics

easure [27] i
lgorithm. Th
distributed o
t. The averag

ሻ is the mi࡭
versity and th

of paramete

roposed algo
hese parame

An a

density that
culate crowd
d encompass
trative. In th
nction values

its two neig
ary solutions
oundary solu
ing distance

Fig. 2.

pes of term
n be used to
nation condi
nation, the o

he experimen
ctive method

s

is used in or
he IGD mea
ver the obje

ge distance fr

inimum Eucl
he convergen

ers

rithm has so
eters are com

adaptive multi-o

 I

t surrounds
ding distanc
sing solution
his techniqu
. Then for co
hboring solu
, which they
utions. The
values in eac

Schematic co

mination con
stop an evo

ition. The alg
obtained Pare

4. EXPER

ntal results to
ds over a set

rder to prov
asure is used
ective space.
rom P* to A

,ܣሺܦܩܫ ܲ

lidian distanc
nce of the ap

ome paramete
mmon amon

objective artific

IJST, Transact

a solution i
ce of solutio
n i without in
ue, for every
omputing the
utions will be
y have the lo

final crowd
ch objective

omputation of

nditions such
olutionary m
gorithm term
eto-front by t

RIMENTAL

o evaluate the
t of test prob

vide a quant
d as follows

Let A be a
is formulate

ܲ∗ሻ ൌ
∑ణ∈௉∗

|ܲ

ce between ࣖ
pproximated

ers that shou
ng the inves

cial bee colony

tions of Electric

s called the
on i in the
ncluding any
y objective
e crowding d
e computed.

owest and hig
ding distanc
function.

the crowding

h as iteratio
method. Here,
minates after t
the algorithm

L STUDY

e performanc
blems introd

itative evalu
: consider P
set of close

ed as:

݀ሺߴ, ሻܣ

ܲ∗|

ࣖ and the po
set A could b

uld be tuned
stigated algo

…

cal Engineering

crowding d
archive we

y other points
function, so

distance valu
Infinite crow

ghest objecti
e of a solu

distance

on numbers,
, we used th
the predefine

m is returned

ce of the A-M
duced in CEC

uation for th
P* as Pareto

d and appro

oints in the ap
be measured

in order to o
orithms. The

g, Volume 37,

distance valu
compute th

s. Figure 2 m
olutions are
ue of a single
wding distan
ive function

ution is calc

 number of
he number o
ed number o
as the result

MOABC com
C09 26] bas

he performan
optimal set,

oximated poi

pproximated
using ࡰࡳࡵሺ

obtain the be
e number of

Number E1

85

ue [3]. As
he largest
makes this

sorted in
e solution,
nce values
values so
ulated by

f function
f function

of function
t.

mpared to
sed on the

nce of the
 which is
ints to the

d points A.
 .ሻ∗ࡼ,࡭

est results.
f function

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

86

evaluation is set at 300000 in this experiment and the maximum number of archive is set at 100. Each
algorithm is evaluated 30 times for each of the test problems and then an average over all the obtained
results is taken. Each algorithm has some specific parameters. The proposed algorithm was examined with
a population of size 50 and the iteration numbers were set at 6000. Hence, the number of function
evaluations will be 300000. The values of coefficients w1, w2 and w3 are set at 1.5, 1.0 and 1.5,
respectively. It should be noted that, the parameters values for the proposed algorithm were obtained
empirically.

c) Unconstrained test functions

In order to compare the performance of the proposed method in comparison with other methods, we
use seven unconstrained test problems UF1 to UF7. These test problems have two objectives which they
should be minimized. The mathematical formulation of the unconstrained problems are given below:

 

 

























 















 









njandevenisjjJ
n

j
xx

J
xf

njandoddisjjJ
n

j
xx

J
xf

UF

Jj
j

Jj
j

2,6sin
2

1

2,6sin
2

:1

2

2

1
2

1

1

2

1
1

11

2

1



 (16)

 

 

































 















 







 















 















2111
2
1

1111
2
1

2
2

2
12

1
2

1
11

6sin6.0
4

24cos3.0

6cos6.0
4

24cos3.0

2,
2

1

2,
2

:2 2

1

Jj
n

j
xx

n

j
xxx

Jj
n

j
xx

n

j
xxx

y

njandevenisjjJy
J

xf

njandoddisjjJy
J

xf

UF

j

j

j

Jj
j

Jj
j





 (17)


































































 

 

 














 

 UF1of thoseas same theare and ,2
20

cos24
2

1

,...,2,,2
20

cos24
2

:3

21
2

2
12

2

)2(3
0.15.0

1
2

1
11

2 2

1 1

JJ
j

y
y

J
xf

njxxy
j

y
y

J
xf

UF

Jj Jj

j
j

n

j

jj
Jj Jj

j
j





 (18)

   

 



















 









2

1

 UF1of thoseas same theare and ,
2

1

1
,,...,2,6sin,

2

:4

21
2

22

21
1

11

Jj
j

Jj
tjjj

JJyh
J

xf

e

t
thnj

n

j
xxyyh

J
xf

UF



 (19)

   

       















 







 






 









2

1

 UF1of thoseas same theare and ,14cos2,
2

2sin
2

1
1

,...,2,6sin,0,
2

2sin
2

1

:5

21
2

2
112

1
1

111

Jj
j

Jj
jjj

JJttthyh
J

xN
N

xf

nj
n

j
xxyyh

J
xN

N
xf

UF




 (20)

 

 





















































 







 









































 









 UF1of thoseas same theare and ,2
20

cos24
2

2sin
2

1
2,0max1

,...,2,6sin,2
20

cos24
2

2sin
2

1
2,0max

:6

21
2

2
112

1
2

1
111

22

11

JJ
j

y
y

J
xN

N
xf

nj
n

j
xxy

j

y
y

J
xN

N
xf

UF

Jj

j

Jj
j

jj
Jj

j

Jj
j









 (21)


















 









2

1

 UF1of thoseas same theare and ,
2

1

,...,2,6sin,
2

:7

21
2

1

5
12

1
2

1

5
11

Jj
j

Jj
jjj

JJy
J

xf

nj
n

j
xxyy

J
xf

UF



 (22)

Table 1 shows the results on unconstrained test problems. It can be seen from Table 1 that the
proposed algorithm obtain rank one on UF2. It also has a competitive performance on the UF3 and UF7.

An adaptive multi-objective artificial bee colony…

June 2013 IJST, Transactions of Electrical Engineering, Volume 37, Number E1

87

The A-MOABC showed satisfactory performance over UF1, UF4, UF5 and UF6 test problems and placed
among the best algorithms. Lexicographic ordering is used to specify the overall rank of our algorithm
among 15 algorithms in optimizing unconstrained test problems. The results show that our algorithm is the
best algorithm among 15 algorithms for optimizing 7 unconstrained problems. The first rank shows the
efficiency of the proposed approach in solving multi-objective optimization problems. It seems that using
adaptive window, crowding distance mechanism, and different movement patterns provides the ability for
the proposed method to provide competitive results over the unconstrained problems in comparison with
the other methods investigated here.

Table 1. The IDG statistics over U1-U7 test problems

Test Problem
Algorithm

UF1 UF2 UF3 UF4 UF5 UF6 UF7

A-MOABC 0.00501 0.00435 0.04843 0.02632 0.05627 0.04151 0.02613
MOABC 0.00618 0.00484 0.05120 0.05801 0.07775 0.06537 0.05573
MOEAD 0.00435 0.00679 0.00742 0.06385 0.18071 0.00587 0.00444
GDE3 0.00534 0.01195 0.10639 0.02650 0.03928 0.25091 0.02522
MOEADGM 0.00620 0.00640 0.04290 0.04760 1.79190 0.55630 0.00760
MTS 0.00646 0.00615 0.05310 0.02356 0.01489 0.05917 0.04079
LiuLi Algorithm 0.00785 0.01230 0.01497 0.04350 0.16186 0.17555 0.00730
DMOEADD 0.01038 0.00679 0.03337 0.04268 0.31454 0.06673 0.01032
NSGAIILS 0.01153 0.01237 0.10603 0.05840 0.56570 0.31032 0.02132
OWMOSaDE 0.01220 0.00810 0.10300 0.05130 0.43030 0.1918 0.05850
ClusteringMOEA 0.0299 0.02280 0.05490 0.05850 0.24730 0.08710 0.02230
AMGA 0.03588 0.01623 0.06998 0.04062 0.09405 0.12942 0.05707
MOEP 0.05960 0.01890 0.09900 0.04270 0.22450 0.10310 0.01970
DECMOSA-SQP 0.07702 0.02834 0.09350 0.03392 0.16713 0.12604 0.02416
OMOEAII 0.08564 0.03057 0.27141 0.04624 0.16920 0.07338 0.03354

d) Constrained test functions

The experiments on the unconstrained test problems show that the proposed algorithm surpasses

other methods. However, the performance of an optimization method may be affected by the constraints
that should be satisfied by the solutions. In order to compare the performance of the proposed method in
comparison with the other method, we use seven constrained test problems CF1 to CF7. As noted in
Section 3, in our method, only the feasible solutions that satisfy all the constraints have the ability to insert
to the external archive. Usually, an optimization method faces more challenges in solving constrained
problems. Hence, the constraint handling method has an important effect in producing satisfactory results.
All the constrained test problems used here have two objectives that should be minimized. The
mathematical formulation of the constrained problems is given below:

 
 

 

 
 

 















































































2

1

2,
2

1

2,
2

:1

2

2

2

23
0.15.0

1
2

12

1

2

2

23
0.15.0

1
1

11

Jj

n

j

j

Jj

n

j

j

njandevenisjjJxx
J

xxf

njandoddisjjJxx
J

xxf

CF (23)

Subject to:    011sin 2121  ffNaff  where N is an integer and
N

a
2

1


.

 

 

























 















 









njandevenisjjJ
n

j
xx

J
xf

njandoddisjjJ
n

j
xx

J
xf

CF

Jj
j

Jj
j

2,6cos
2

1

2,6sin
2

:2

2

2

1
2

12

1

2

1
1

11

2

1





 (24)

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

88

Subject to: 0
1 ||4


 te

t where    11sin2 211  ffNafft  .

   



















 






















































nj
n

j
xxy

j

y
y

J
xf

njandevenisjjJnjandoddisjjJ
j

y
y

J
xf

CF

jj
Jj

j

Jj
j

Jj

j

Jj
j

,...,2,6sin,2
20

cos24
2

1

2,2,2
20

cos24
2

:3

1
2

2

2
12

21
2

1
11

22

11






 (25)

Subject to:    011sin 2
2

1
2

12  ffNaff 
.

     

   
 

 



























 











2

1

n,…3,4,=jfor ,,
1125.0

)
2

2
1(

2

3
||,,...,2,6sin,1

2,2,

:4
2

2
2112

2111

Jj
jjjjj

Jj
jj

tth
otherwiset

tiftthnj
n

j
xxyyhxf

njandevenisjjJnjandoddisjjJyhxf

CF 
 (26)

Subject to: 0
1 ||4


 te

t where 25.05.0
2

6sin 112 





  x

n
xxt


.

   
 

     

   

































 







 























211

111

21

2
12

2
211

6sin8.0

6cos8.0
,2,2

n,…3,4,=jfor ,14cos2,1
1125.0

)
2

2
1(

2

3
||,

:5 2

1

Jjif
n

j
xxx

Jjif
n

j
xxx

ynjandevenisjjJnjandoddisjjJ

ttthyhxf
otherwiset

tiftthyhxf

CF

j

j

j

Jj
jjj

Jj
jj






 (27)

Subject to: 025.05.0
2

6sin8.0 1112 





  x

n
xxx


.

   

 




























 







 













2

1

1111

1111
22

12

21
2

11

6.06sin8.0

6.06cos8.0
,1

2,2,

:6

Jj
j

j

jj

Jj
j

Jjifx
n

j
xxx

Jjifx
n

j
xxx

yyxf

njandevenisjjJnjandoddisjjJyxf

CF



 (28)

Subject to:          0115.0115.0
2

6sin8.0 2
11

2
11112 






  xxxxsign

n
xxx



      015.0125.015.0125.0
4

6sin8.0 1111114 





  xxxxsign

n
xxx


.

     

           
n,…3,5,6,=jfor

,14cos2,,
6sin

6cos
,1

2,2,

:7

2

1

22
42

21

11
2

12

2111































 







 













Jj
j

j

j

jjj

Jj
jj

ttthtthth
Jjif

n

j
xx

Jjif
n

j
xx

yyhxf

njandevenisjjJnjandoddisjjJyhxf

CF




 (29)

Subject to:          0115.0115.0
2

6sin 2
11

2
1112 






  xxxxsign

n
xx



      015.0125.015.0125.0
4

6sin 111114 





  xxxxsign

n
xx


.

The experimental results on the constrained test problem are shown in Table 2. The results represent that
the proposed A-MOABC method has good performance on CF2, CF3 and CF5 and placed among the best
algorithms for optimizing those constrained test problems. The presented algorithm demonstrates

An adaptive multi-objective artificial bee colony…

June 2013 IJST, Transactions of Electrical Engineering, Volume 37, Number E1

89

competitive performance on CF1, CF4, CF6 and CF7. The Lexicographic ordering shows that the overall
rank of the proposed algorithm among 9 algorithms for optimizing 7 constrained test problem is 3.

Table 2. The IDG statistics over CF1-CF7 test problems

Test Problem
Algorithm

CF1 CF2 CF3 CF4 CF5 CF6 CF7

A-MOABC 0.01279 0.00282 0.07451 0.00892 0.02885 0.02512 0.03270
MOABC 0.00992 0.01027 0.08621 0.00452 0.06781 0.00483 0.01692
GDE3 0.02940 0.01597 0.12750 0.00799 0.06799 0.06199 0.04169
MOEADGM 0.01080 0.00800 0.51340 0.07070 0.54460 0.20710 0.53560
MTS 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469
LiuLi Algorithm 0.00085 0.00420 0.18290 0.01423 0.10973 0.01394 0.10446
DMOEADD 0.01131 0.00210 0.05630 0.00699 0.01577 0.01502 0.01905
NSGAIILS 0.00692 0.01183 0.23994 0.01576 0.18420 0.02013 0.23345
DECMOSA-SQP 0.10773 0.09460 1000000 0.15265 0.41275 0.14782 0.26049

e) The effect of colony size

The previous experiments showed that the proposed method provides competitive results compared to

the other methods. It seems that the performance of A-MOABC may be affected by the colony size. In this

experiment, the effect of colony size on the performance of the proposed method is considered. Here, the

number of function evaluation is fixed at 300000. Hence, by changing the size of colony, the number of

iterations is changed. The effect of colony size is represented in Fig. 3. The results show that the size of

the colony has a positive effect on the performance of the proposed method. Based on the results, the

proposed method with small colony has the worst performance. The competitive results are obtained when

the size of the colony is set at range [50, 90]. The performance of the method decreases when the colony

size is set at 100. It seems that the performance of the proposed method decreases when the colony size is

larger than 90. The lexicographic ordering shows that the best results are obtained when the colony size is

set at 70.

UF1 UF2

UF3

UF4

UF5

UF6

UF7

CF1

CF2

CF3

CF4

CF5

CF6 CF7

Fig. 3. The effect of colony size on the performance of A-MOABC

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

90

f) The effect of adaptive window

As mentioned in Section 3, the windowing mechanism is used by the employed bees in order to select

their leaders from the archive members. The size of the window is adaptively adjusted throughout
iterations. As described in Section 3, the size of window along the i-th dimension of solution space is
adaptively adjusted based on ࢏࢞ࢇࡹ and ࢏࢔࢏ࡹ and number of non-dominated solutions in the archive. For
UF1, the actual values for ࢏࢞ࢇࡹ and ࢏࢔࢏ࡹ are 1.0 and 0.0 respectively. The changes on the window size
throughout iterations are presented in Fig. 4 for iterations 1, 100, and 2000. From the figure, it can be seen
that the size of the window decreases as the algorithm proceeds. A window in a more crowded region
contains more than one archive member. Hence, the fitnesses of those archive members decrease and the
chance to select them as a leader for employed bees decreases too. In this way, the employed bees are
encouraged to move to the sparse regions. The effect of this mechanism can be seen by comparing Fig. 4c
with Fig. 4a and Fig. 4b. The sparse regions are covered as the algorithm proceeds. In general, it seems
that the windowing mechanism helps the crowding distance mechanism to provide an archive in which the
members are distributed uniformly.

(a) #1

(b) #100

(c) #2000

Fig. 4. The changes of window size throughout iterations

5. CONCLUSION

In this paper we present an adaptive multi-objective algorithm based on ABC. The performance of the
proposed algorithms depends on a crowding distance technique to control proximity of the external
archive members and a windowing mechanism for employed bees for selecting their leaders to guide them
and make their trajectories better. The population in the proposed algorithm used different flying patterns
which help the algorithm to maintain a trade-off between exploration and exploitation. The properties of
the presented algorithm can make it a better method in front of other algorithms due to the mechanism for
keeping diversity and also an adaptive efficient movement pattern. The experimental study showed that
the presented algorithm is competitive compared to other algorithms investigated in this work. Also, the
experiments showed that the crowding distance mechanism and windowing mechanism provide the ability
for the algorithm to provide a Pareto-front where its members are distributed uniformly.

REFERENCES

1. Bahmanifirouzi, B., Farjah, E., Niknam, T. & Azad Farsani, E. (2012). A new hybrid HBMO-SFLA algorithm

for multi-objective distribution feeder reconfigurtion problem considering distributed generator units. Iranian

Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 36, No. E1, pp. 51-66.

2. Mohammadi, S. A., Akbari, R. & Mohammadi, S. H. (2012). An efficient method based on ABC for optimal

multilevel thresholding. Iranian Journal of Science and Technology, Transactions of Electrical Engineering,

Vol. 36, No. E1, pp. 37-49.

An adaptive multi-objective artificial bee colony…

June 2013 IJST, Transactions of Electrical Engineering, Volume 37, Number E1

91

3. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm:

NSGA-II. In IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182–197.

4. Raquel, C. R. & Naval, Jr. P. C. (2005). An effective use of crowding distance in multiobjective particle swarm

optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO- 2005), pp.

257–264, Washington, DC, USA, June 2005. ACM Press.

5. Akbari, R. & Ziarati, K. (2012). Multi-objective bee swarm optimization. International Journal of Innovative

Computing, Information and Control (IJICIC), Vol. 8, No. 1 (B), pp. 715-726.

6. CoelloCoello, C. A., Pulido, G. T. & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm

optimization. IEEE Transactions on Evolutionary Computation, Vol. 8, No.3, pp. 256-279.

7. Akbari, R., Hedayatzadeh, R., Ziarati, K. & Hasanizadeh, B. (2012). A multi-objective artificial bee colony

algorithm. Journal of Swarm and Evolutionary Computation, Elsevier, Vol. 2, No. 1, pp. 39-52.

8. Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N. & Zhang, Q. (2011). Multiobjective evolutionary

algorithms: a survey of the state-of-the-art. In Journal of Swarm and Evolutionary Computation, Vol. 1, No.1,

pp. 32-49.

9. Guliashki, V., Toshev, H. & Korsemov, C. (2009). Survey of evolutionary algorithms used in multiobjective

optimization. Journal of Problems of Engineering Cybernetics and Robotics, Vol. 60, pp. 42-54.

10. Leong, W. F. & Yen, G. G. (2008). PSO-based multiobjective optimization with dynamic population size and

adaptive local archives. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 38, No. 5.

11. Hedayatzadeh, R., Hasanizadeh, B., Akbari, R. & Ziarati, K. (2010). A multi-objective artificial bee colony for

optimizing multi-objective problems. 3th International Conference on Advanced Computer Theory and

Engineering, ICACTE, Vol. 5, pp. 271-281.

12. Shivaie, M., Sepasian, M. S. & Sheikheleslami, M. K. (2011). Multi–objective transmission expansion planning

using fuzzy–genetic algorithm. Iranian Journal of Science and Technology, Transactions of Electrical

Engineering, Vol. 35, No. E2, pp. 141-159.

13. Mezura-Montes, E., Reyes-Sierra, M., & Coello, C. A. C. (2008). Multi-objective optimization using differential

evolution: a survey of the state-of-the-art. Advances in differential evolution, Springer Berlin Heidelberg, pp.

173-196.

14. Reyes-Sierra, M. & Coello Coello, C. A. (2006). Multi-objective particle swarm optimizers: A survey of the

state-of-the-art. International Journal of Computational Intelligence Research, Vol. 2, No. 3, pp. 287–308.

15. Marler, R. T. & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Struct

Multidisc Optim, Vol. 26, pp. 369–395.

16. Coello, C. A. C. (1999). A comprehensive survey of evolutionary-based multiobjective optimization techniques.

Knowledge and Information systems, Vol. 1, No. 3, pp. 129-156.

17. Coello Coello, C. A., Pulido, G. T. & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm

optimization. IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 256–279.

18. Ho, S. L., Shiyou, Y., Guangzheng, N., Lo, Edward W. C. & Wong, H. C. (2005). A particle swarm

optimization based method for multiobjective design optimizations. IEEE Transactions on Magnetics, Vol. 41,

No. 5, pp. 1756–1759.

19. Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In Erick

Cant´u-Paz et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’2003), pp. 37–48. Springer. Lecture Notes in Computer Science Vol. 2723.

20. Raquel, V. & Naval, Jr. Prospero C. (2005). An effective use of crowding distance in multiobjective particle

swarm optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005),

pages 257–264, Washington, DC, USA, ACM Press.

21. Karaboga, D. & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization:

Artificial bee colony (ABC) algorithm. Journal of Global Optimization, Vol. 39, pp. 459–471.

S. A. R. Mohammadi et al.

IJST, Transactions of Electrical Engineering, Volume 37, Number E1 June 2013

92

22. Zou et al., (2011). Solving multiobjective optimization problems using artificial bee colony algorithm, Discrete

Dynamics in Nature and Society, Vol. 2011, Article ID 569784, 37 pages, doi:10.1155/2011/569784.

23. Omkar, S. N., Senthilnath, J., Khandelwal, R., Narayana Naik, G. & Gopalakrishnan, S. (2011). Artificial bee

colony (ABC) for multi-objective design optimization of composite structures. Applied Soft Computing, Vol. 11,

Issue 1, pp. 489-499.

24. Zhang, H., Zhu, Y., Zou, W. & Yan, X. (2012). A hybrid multi-objective artificial bee colony algorithm for

burdening optimization of copper strip production. Applied Mathematical Modelling, Vol. 36, Issue 6, pp. 2578–

2591.

25. Maximiano, M. da S., Vega-Rodríguez, M. A., Gómez-Pulido, J. A. & Sánchez-Pérez, J. M. (2012). A new

multiobjective artificial bee colony algorithm to solve a real-world frequency assignment problem. Neural

Computing & Applications, doi: 10.1007/s00521-012-1046-7.

26. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W. & Tiwari, S. (2008). Multiobjective optimization test

instances for the congress on evolutionary computation (cec’09) 2009 special session and competition, Working

Report, CES-887, School of Computer Science and Electrical Engineering, University of Essex.

27. Q. Zhang, W. Liu, H. Li, The Performance of a New Version of MOEA/D on CEC09 Unconstrained MOP Test

Instances, In Proceeding of Congress on Evolutionary Computation (CEC’09) (2009) 203-208.

