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Abstract– Subspace Pursuit (SP) is an efficient algorithm for sparse signal reconstruction. When 
the interested signal is block sparse, i.e., the nonzero elements occur in clusters, block sparse 
recovery algorithms are developed. In this paper, a blocked algorithm based on SP, namely Block 
SP (BSP) is presented. Contrary to the previous algorithms such as Block Orthogonal Matching 
Pursuit (BOMP) and mixed 12/ll -norm, our approach presents better recovery performance and 
requires less time when non-zero elements appear in fixed blocks in a particular hardware in most 
of the cases. It is demonstrated that our proposed algorithm can precisely reconstruct the block-
sparse signals, provided that the sampling matrix satisfies the block restricted isometry property -
which is a generalization of the standard RIP widely used in the context of compressed sensing- 
with a constant parameter. Furthermore, it is experimentally illustrated that the BSP algorithm 
outperforms other methods such as SP, mixed 12/ll -norm and BOMP. This is more pronounced 
when the block length is small.          
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1. INTRODUCTION 
 

The most important purpose of the Compressed Sensing (CS) is the reconstruction of an unknown vector 
from an under-determined system of linear equation [1], [2]. The CS has gained a fast-growing interest in 
many different communication fields such as channel estimation [3], [4], error-correcting codes [5] and 
other fields (see e.g.[6]). 

Consider the equation Dxy = , where x  is an unknown K -sparse signal of length N , D  denotes a 
sampling matrix of size NL  (where typically NL < ) and y  denotes the measurement vector of length 
L . Generally, when NK   one can hope that the solution of the recent equation is unique for a large 
enough L . It has been shown that if D  is chosen properly and x  is sufficiently sparse, then x  can be 
recovered from Dxy =  [7]. 

In order to obtain the sparsest solution of Dxy = , the solution for the minimum number of nonzero 
components should be investigated (that is minimum 0l  norm); however, finding the minimum 0l  norm is 
an intractable problem as the dimension increases (because of combinatorial search) [8]. In addition, the 
minimum 0l  norm is too sensitive to noise, which makes the approach less popular. 

The two most commonly used signal recovery algorithms are Basis Pursuit (BP), or 1l  - minimization 
approach [1], [9] and Orthogonal Matching Pursuit (OMP) [10]. In the BP algorithm, the sparse signal is 
the solution of minimum 1l  norm, i.e. the solution which minimizes || ii

x . Such a solution can be 
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easily found by linear programming (LP) methods. The main criteria to find out whether BP can recover 
the data is the Restricted Isometry Property (RIP) [11]. By utilizing fast LP algorithms, specifically 
interior-point methods, large-scale problems become tractable, although the process is very slow. The 
OMP algorithm is one of the conventional greedy algorithms, which is used in CS area because of its 
simplicity. The RIP has been studied for OMP, similar to BP method. In [12], the authors showed that 
OMP can exactly recover any K -sparse signal in no more than K  steps if the RIP of order 1K  with 
isometry constant ߜ ൏

ଵ

ଷ√௄
 is satisfied. OMP is quite fast, but it is a greedy algorithm and does not provide 

a good estimate of sources. Along with the previous approaches, other algorithms like SL0 [13] have also 
been suggested that are faster than BP while providing at least the same accuracy. 

The conventional sparsity model assumes that the nonzero coefficient elements can be located 

anywhere in the vector. In some practical scenarios such as when dealing with multi-band signals [14], 

equalization of sparse communication channels [15] and magnetoencephalography [16], the nonzero 

coefficients might occur in blocks. In such cases the signals will be referred to as block-sparse signals. 

The question which would arise is whether the block-sparse signal exposes better recovery properties 
than treating the signal as being sparse in the conventional sense. This problem is considered in [17], 
where it is shown that, a mixed 12/ll -norm recovery algorithm, as a suitable extension of the BP method to 
the block-sparse case [7], guarantees recovery of any block-sparse signal if D  has a small block RIP [17]. 
However, this algorithm is computationally complex, as we have a complicated optimization problem. For 
the more general setting of model-based compressive sensing, which includes block-sparsity as a 
particular case, it is shown in [18] that an extension of the CoSaMP (Compressive Sampling Matching 
Pursuit) algorithm [19] can yield excellent recovery reconstruction properties for block sparse signals. 
Other beneficial algorithms are BOMP [7] and BSL0 [20] which generalize the OMP and SL0, 
respectively. BOMP is a block version of the OMP and does not provide a good estimation of sources. 
Although the BSL0 has the advantages of SL0, the setting of input parameters causes the BSL0 method to 
become partly complicated. Like the conventional sparse algorithms, the recovery condition of some 
block-sparse methods such as BOMP has been considered in [21]. It was shown that if the sampling 
matrix D  satisfies the Block RIP of order 1K  with isometry constant	ߜௗ ൏

ଵ

ଵାଶ√௄
 ,  BOMP can exactly 

recover block K -sparse signals in no more than K  steps. 
In this paper, a block version of the Subspace Pursuit (SP) [22] -which is more efficient than 

CoSaMP [22]- is introduced, termed Block-SP (BSP). This approach is mainly based on the SP and 
BOMP algorithms. Then, the recovery performance of this method using Block RIP is analyzed. It is 
illustrated that the proposed algorithm outperforms both BOMP and mixed 12/ll -norm algorithms. 

The rest of the paper is organized as follows: the next section introduces the basic principles of block 

sparse signal reconstruction. The proposed method is introduced in Section 3. The main point of formal 

proof for guaranteed reconstruction performance of BSP method is considered in Section 4. In Section 5, 

the proposed method is implemented. Also, a comprehensive comparison between this method and the 

conventional SP, BOMP and mixed 12/ll -norm methods is performed and the results are presented. 

Finally, a brief conclusion is given in Section 6.  
 

2. BLOCK SPARSITY AND BLOCK RIP 
 
In this section, we present some main concepts of block sparse signal recovery, including block sparsity 

and block RIP. Then, we consider four Lemmas that are a block version of Lemma 1 and Lemma 2 in 

[22]. The Definitions and Lemmas which are mentioned in this section are used in our algorithm 

specifically in the next sections. 

 



Block subspace pursuit for block-sparse… 
 

June 2013                                                                            IJST, Transactions of Electrical Engineering, Volume 37, Number E1      

3

a) Block sparsity 
 

A block-sparse signal can be stated as follows,  
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where ][iTx , Mi ,1,=   is called the hi t  block of x  and d  is the block size. The signal x  is K -sparse 
if, at most, K  blocks of the signal out of M  are nonzero. According to the definition of mixed 02/ll - 
norm [17], block sparsity can also be stated as,  
 

‖ x ‖ଶ,଴ ൌ෍ܫሺ‖ x ሾ݈ሿ‖ଶ ൐ 0ሻ

ெ

௟ୀଵ

, 

  
where the indicator function (.)I  is defined as follows,  

‖ሺܫ x ሾ݈ሿ‖ଶ ≜ ൜1 			‖ x ሾ݈ሿ‖ଶ ് 0
0						 otherwise

 

It is clear that when 1=d , the block sparsity reduces to the conventional sparsity. 
 
b) Block RIP (BRIP) 
 

Before the definition of BRIP, we review the conventional RIP [11]. A matrix	D ∈ Թ௅ൈே satisfies 
the RIP of order K  if there exists a constant (0,1)  such that,  

ሺ1 െ ‖ሻߜ x ‖ଶଶ ൑ ฮD x ฮ
ଶ

ଶ
൑ ሺ1 ൅ ‖ሻߜ x ‖ଶଶ 

holds for all	 x ∈ Թே assuming that‖ x ‖଴ ൑  In [17], this property is generalized to block-sparse .ܭ
vectors and therefore leads to the following definition.  
 
Definition 1. )[17]( RIP Block  The matrix	D ∈ Թ௅ൈே has the BRIP with parameters ),( dK   where 

(0,1)d , if for all d -block K -sparse	 x ∈ Թே	 we have,  

ሺ1 െ ‖ௗሻߜ x ‖ଶଶ ൑ ฮD x ฮ
ଶ

ଶ
൑ ሺ1 ൅ ‖ௗሻߜ x ‖ଶଶ 

The BRIP can be defined in other forms. However, the block truncation should at first be defined.  
 
Definition 2. )( Truncation Block  Suppose that	D ∈ Թ௅ൈே, 	 x ∈ Թே	and },{1, MI  . Let || I  
denote the size of I . The matrix D ூ ∈ Թ

௅ൈ|ூ|ௗ consists of the columns of D  with indices 11)(  di  to 
id  for Ii  and x ூ ∈ Թ

|ூ|ௗ denotes a vector whose elements start from the      ( 11)(  di )th element of 
x  and ends at the id th element for Ii . The space spanned by the columns of ID  is denoted by span

)( ID .  
Now, BRIP can also be expressed in the following form, 

A matrix	D ∈ Թ௅ൈே is stated to satisfy the BRIP with parameters ),( dK   for 10  d , if for the index 
set },{1, MI   ( KI || ) we have,  

ሺ1 െ ௗሻฮߜ x ூฮଶ
ଶ
൑ ฮD ூ x ூฮଶ

ଶ
൑ ሺ1 ൅ ௗሻฮߜ x ூฮଶ

ଶ
 

 for all	 x ூ ∈ Թ
ௗ|ூ|. We identify dK , the block RIP constant, as the infimum of all parameters d  for 

which the BRIP holds, i.e.  

ௗ௞ߜ  ≜ inf	ሼߜௗ:	ሺ1 െ ௗሻฮߜ x ூฮଶ
ଶ
൑ ฮD ூ x ூฮଶ

ଶ
൑ ሺ1 ൅ ௗሻฮߜ x ூฮଶ

ଶ
	, |ܫ|∀ ൑ ,ܭ ∀ x ூ ∈ Թ

ௗ|ூ|}. 
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Lemma 1. (Uniformity of dK )  
For any two integer numbers K  and K  , if KK  , then we have,  

                              .'dKdK                                                                     (1) 

Proof: See Appendix A.  
Lemma 2. blocks) of ityorthogonal(Near   

|)||(|  >|,|< JIdJI  bDaD Let },{1,2,, MJI   be two disjoint sets,  =JI . Assume that 
1|)||(|  JId , then all vectors ܉ ∈ Թௗ|ூ| and ܊ ∈ Թௗ|ூ|,  

							ห൏ ۲ூ܉, ۲௃܊ ൐ห ൑  ଶ                                      (2)‖܊‖ଶ‖܉‖ௗሺ|ூ|ା|௃|ሻߜ

 and  

                      
ฮ۲ூ

ு۲௃܊ฮଶ ൑                                                    ଶ‖܊‖ௗሺ|ூ|ା|௃|ሻߜ
(3) 

 where " H " is the conjugate transpose operator.  
Proof: See Appendix B. 
 
Definition 3. (Projection and Residue) Suppose ܡ ∈ Թ௅ and	D ூ ∈ Թ

௅ൈ|ூ|ௗ. Assume that ID  is a matrix of 
full column rank )|(| LdI  , then the Moor-penrose pseudoinverse of ID  can be denoted by 

H
II

H
II DDDD 1† )(=  . The projection operator of y  onto span( ID ) is defined as, 

,=),(proj= †yDDDyy IIIp



 

and the residue vector of the projection is defined as,  

                           
.=),(resid= pIr yyDyy 



                                                        (4) 

Lemma 3. (Orthogonality of the residue) For any vector ܡ ∈ Թ௅ and sampling matrix	D ூ ∈ Թ
௅ൈ|ூ|ௗ of full 

column rank )|(| LdI  , if ),( resid= Ir Dyy , then we have,  

                                0.=r
H
I yD                                                                  (5) 

Proof: See Appendix C. 
Lemma 4. (Approximation of the projection residue) Suppose a matrix	D ∈ Թ௅ൈே, let 

},{1,2,, MJI   be two disjoint sets and 1|)||(|  JId . Moreover, let )(span IDy , 
),(proj= Jp Dyy  and ),(resid= Jr Dyy . Then,  

                              

 ฮܡ௣ฮଶ ൑
ఋ೏ሺห|಺|หశ|಻|ሻ

ଵିఋౣ౗౮	ሺ೏|಺|,೏|಻|ሻ
 ଶ                                              (6)‖ܡ‖

 and  

                      

 ൬1 െ
ఋ೏ሺห|಺|หశ|಻|ሻ

ଵିఋౣ౗౮	ሺ೏|಺|,೏|಻|ሻ
൰ ଶ‖ܡ‖ ൑ ௥‖ଶܡ‖ ൑                                       (7)	ଶ‖ܡ‖

 Proof: See Appendix D. 
 

3. THE BSP ALGORITHM 
 
In this section we present our proposed algorithm method. Prior to this, we consider the OMP and SP 
algorithms. As can be seen in Algorithm 1, the SP method [22] selects K  indices related to the largest 
correlation amplitude in every stage of estimation, whilst only one index is selected in OMP method [10]. 
In addition to this property of choosing K  number of indices which are the estimation of the correct 
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support set T , it would edit and refine its own set of K  indices. This would bring the estimated support 
set close to correct support set (this cannot be done in the family of OMP algorithm). In our proposed BSP 
algorithm (Algorithm 2), contrary to BOMP, in which in each stage only the block index that is best 
matched to residual vector is chosen [7], it selects the K  block indices which have the largest correlation. 
In addition, this selected set of K  block indices in every iteration stage of estimation would not be 
constant and would be refined itself. As a result, the estimated support set would become very close to the 
correct support set in a way similar to the SP algorithm.  

 
Algorithm 1. SP Algorithm 

Input: sampling matrix D , measurement vector y , sparsity K  

Initialize: 
0=       l  

yDHlh =         

=       0T  { K  first indices in descending sort |)(| jhl } 

=       l
ry  resid ),( 0T

Dy  

Iteration: 
1) 1=     ll  

2) 1=     l
r

Hlh yD  

3) 1=
~

    ll TT  { K  first indices in descending sort |)(| jhl } 

4) yDx †
~=     lTp  

5) =      lT { K  first indices in descending sort |)(| jpx } 

6) ),(resid=     lT

l
r Dyy  

7)    if ‖ܡ௥
௟‖ଶ ൒ =௥௟ିଵ‖ଶ, then 1ܡ‖ ll TT  and quit 

Output: The estimate signal x̂ , as olTN
=ˆ

}{1, 
x  and yDx †=ˆ lTlT

. 

 
Algorithm 2. BSP Algorithm (proposed algorithm) 

Input: sampling matrix D , measurement vector y , sparsity K , block length d  

Initialize: 
0=       l  

yDHlh =         

=       0T  {d-block K  first indices in descending sort ‖݄௟ሾ݆ሿ‖ଶ} 

=       l
ry  resid ),( 0T

Dy  

Iteration: 
1) 1=     ll  

2) 1=     l
r

Hlh yD  

3) 1=
~

     ll TT  {d-block K  first indices in descending sort ‖݄௟ሾ݆ሿ‖ଶ} 

4) yDx †
~=     lTp  

5) =      lT {d-block K  first indices in descending sortฮܠ௣ሾ݆ሿฮଶ} 

6) ),(resid=     lT

l
r Dyy  

7)    if	‖ܡ௥௟‖ଶ ൒ =௥௟ିଵ‖ଶ, then 1ܡ‖ ll TT  and quit 

Output: The estimate signal x̂ , as olTN
=ˆ

}{1, 
x  and yDx †=ˆ lTlT

. 
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4. ANALYSIS OF BSP USING BLOCK RIP 
 
In this section, we investigate a sufficient condition for the exact reconstruction of any block-sparse signal 

using Block RIP. Four theorems are considered that are a block version of corresponding theorems in [22]. 

However, the main conclusion of our work is included in theorem1.  

Theorem 1. Suppose that	 x ∈ Թே be a d -block K -sparse signal and let its measurement vector be	ܡ ൌ
ܠ۲ ∈ Թே. If the sampling matrix D  satisfies the BRIP with constant  

                                     0.1672,<3dK                                                                    (8) 

then the BSP algorithm is guaranteed to exactly recover x  from y  via a finite number of iterations. 
To prove the main theorem in this paper, the three original theorems should be considered which are as 
follows. 
Theorem 2. The following inequality is valid,  

                         
 ฮି்ܠ ෨்೗ฮଶ ൑

ଶఋయ೏ೖ
ሺଵିఋయ೏ೖሻమ

ฮ்ି்ܠ೗షభฮଶ                                                  (9) 

that ฮି்ܠ ෨்೗ฮଶ and ฮ்ି்ܠ೗షభฮଶ stand for residue signal coefficient vector corresponding to the support set 

estimate ෨ܶ௟ 	and residue signal based upon the estimate of supp( x ) before the thl  iteration of the BSP 

algorithm, respectively.  

Proof: Our proof is divided into two stages. At the first stage, it is shown how the measurement residue 
1l

ry  is connected to 1 lTT
x ,  

                    ,    ==
1,

1

11
1

1
1























lTP

lTT
lTlTT

l
rlTT

l
r x

x
DDxDy                                (10) 

for some ܠ௥௟ିଵ ∈ Թห்∪்೗షభห and ܠ௉,்೗షభ ∈ Թ
ห்೗షభห. Furthermore, 

                        ฮܠ௉,்೗షభฮଶ ൑
ఋమ೏ೖ

ଵିఋమ೏ೖ
ฮ்ି்ܠ೗షభฮଶ		                                          (11) 

To consider (10) , it is clear that,  

),(resid= 1
1




lT

l
r Dyy ),(resid= 11111 

 lTlTTlTTlTTlTT
DxDxD

 

),(resid= 111  lTlTTlTT
DxD ),(resid 111 

 lTlTTlTT
DxD  

0),(resid= 111  lTlTTlTT
DxD

 

)(= 11

(4)

 lTTlTT
xD 111

1
111 ))(( 


 lTTlTT

H
lTlT

H
lTlT

xDDDDD
 

,]   [=
1,

1

11















 lTP

lTT
lTlTT x

x
DD  

 so,  

).()(= 111
1

111, 


  lTTlTT

H
lTlT

H
lTlTp

xDDDDx
 

In addition, we have this BRIP definition, (let 11=  lT

H
lTI DDD )  
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ฮܠ௉,்೗షభฮଶ ൌ ቛ൫۲்೗షభ
ு ۲்೗షభ൯

ିଵ
۲்೗షభ
ு ሺ۲்ି்೗షభ்ି்ܠ೗షభሻቛଶ

 

൑
1

1 െ ௗ௞ߜ
ฮ۲்೗షభ

ு ሺ۲்ି்೗షభ்ି்ܠ೗షభሻฮଶ 

(3)


ଶௗ௞ߜ

1 െ ௗ௞ߜ
ฮ்ି்ܠ೗షభฮଶ

 

(1)


ଶௗ௞ߜ

1 െ ଶௗ௞ߜ
ฮ்ି்ܠ೗షభฮଶ

 

and here, proof of the first step is completed. Now, in this step, we show that, 

ฮି்ܠ ෨்೗ฮଶ ൑
ଷௗ௞ߜ2

ሺ1 െ ଷௗ௞ሻଶߜ
ฮ்ି்ܠ೗షభฮଶ 

 At first, we define,  

.
~

= 1


  ll TTT  

Based on the recent definition and considering BSP algorithm , T  contains the K  indices corresponding 

to the largest magnitude entries, the 1l
r

H yD , therefore,  

                   ฮ۲்∆
ு ௥௟ିଵฮଶܡ ൒ ฮ۲்

ுܡ௥௟ିଵฮଶ ൒ ฮ۲்ି்೗షభ
ு  ௥௟ିଵฮଶ                           (12)ܡ

By removing the common block columns between 
TD  and 1 lTT

D  and noting that ,=1  


lTT  we 
can write,  

ቛ۲்∆షሺ்∆∩ሺ்ି்೗షభሻሻ
ு ௥௟ିଵቛܡ

ଶ
൒ ቛ۲்ି்೗షభିሺ்∆∩ሺ்ି்೗షభሻሻ

ு ௥௟ିଵቛܡ
ଶ
 

This implies that,  

ฮ۲்∆షሺ்∆∩்ሻ
ு ௥௟ିଵฮଶܡ ൒ ቛ۲்ି்೗షభିሺ்∆∩்ሻ

ு ௥௟ିଵቛܡ
ଶ
 

Therefore,  

     
									

ฮ۲்∆ି்
ு ௥௟ିଵฮଶܡ ൒ ቛ۲்ି்೗షభି்∆

ு ௥௟ିଵቛܡ
ଶ
ൌ ฮ۲்ି ෨் ೗

ு ௥௟ିଵฮଶܡ
                      (13) 

 

The left hand side of (13) can be derived to be equal to, 

			

ฮ۲்∆ି்
ு ௥௟ିଵฮଶܡ

(10)

= ฮ۲்∆ି்
ு ۲்∪்೗షభܠ௥

௟ିଵฮ
ଶ

 

      
 

(3)

 ௥ܠหሺ்∆ି்ሻ∪ሺ்∪்೗షభሻหฮߜ
௟ିଵฮ

ଶ
ൌ ௥ܠหሺ்∆∪்∪்೗షభሻหฮߜ

௟ିଵฮ
ଶ
൑ ௥௟ିଵฮଶܠଷௗ௞ฮߜ

             (14) 

 

And, for the right hand side of (13), using triangular inequality and BRIP definition,  

ฮ۲்ି ෨் ೗
ு ௥௟ିଵฮଶܡ ൌ ฮ۲்ି ෨் ೗

ு ۲்∪்೗షభܠ௥
௟ିଵฮ

ଶ
 

ൌ ቛ۲்ି ෨் ೗
ு ۲൫்ି ෨் ೗൯∪ሺ்∪்೗షభିሺ்ି ෨் ೗ሻሻܠ௥

௟ିଵቛ
ଶ
 

൒ ฮ۲்ି ෨் ೗
ு ۲்ି ෨் ೗ሺܠ௥

௟ିଵሻ்ି ෨் ೗ฮଶ	 

െቛ۲்ି ෨் ೗
ு ۲ሺ்∪்೗షభି൫்ି ෨் ೗൯ሻሺܠ௥

௟ିଵሻሺ்∪்೗షభି൫்ି ෨் ೗൯ሻቛଶ
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  )(1

(3)(1),

dK ฮሺܠ௥௟ିଵሻ்ି ෨் ೗ฮଶ െ ௥௟ିଵฮଶܠଷௗ௞ฮߜ
                                       (15) 

 Combining (13), (14) and (15),  

௥௟ିଵฮଶܠଷௗ௞ฮߜ ൒(1-ߜௗ௞)	ฮሺܠ௥௟ିଵሻ்ି ෨் ೗ฮଶ 

െߜଷௗ௞ฮܠ௥௟ିଵฮଶฮሺܠ௥௟ିଵሻ்ି ෨் ೗ฮଶ 

൑
dK

dK



1

2 3 ฮܠ௥௟ିଵฮଶ

(1)


dK

dK

3

3

1

2





ฮܠ௥௟ିଵฮଶ                                             (16) 

Now, the explicit from of 1l
rx  in (10) is manipulated. 

Therefore,  

    TTTT
l
rlTTlTT

l
r ~~

1
11

1 =)(=)( 




  xxxx                                             (17) 

 and also,  
ฮܠ௥௟ିଵฮଶ ൑ ฮ்ି்ܠ೗షభฮଶ ൅ ฮܠ௣,்೗షభฮଶ

 

                    
(11)

 ሺ1 ൅
ఋమ೏ೖ

ଵିఋమ೏ೖ
ሻฮ்ି்ܠ೗షభฮଶ

(1)

 ଵ

ଵିఋయ೏ೖ
ฮ்ି்ܠ೗షభฮଶ

                                   (18) 

substitute (17) into (16) and then using (18) shows that,  

ฯ lTT
~

x ฯ
ଶ
൑

2
3

3

)(1

2

dK

dK





ฮ்ି்ܠ೗షభฮଶ, 

which completes the proof of Theorem 2.  
Theorem 3. It holds that  

ฮ்ି்ܠ೗ฮଶ ൑
dK

dK

3

3

1

1







ฯ lTT
~

x ฯ
ଶ
, 

in which lTT
x  stand for residual signal based upon the estimate of supp )(x  after the thl  iteration and 

lTT
~

x  is similar theorem 2.  
Before proving this Theorem, when considering the BSP algorithm, it can be concluded that, 

yDx †
~= lTp  is interpreted as projection coefficient vector. Let us define smear vector as,  

,= ~lTp xxε   

which is non-zero when ܶ ⊈ ෨ܶ ௟ [22]. We must show that ‖ઽ‖ଶ is small and then consider the main 
problem in Theorem 3. To get the desired result, the proof is divided into three sections. In the first 
section, it can be shown that,  

 ‖ઽ‖ଶ ൑
ఋయ೏ೖ

ଵିఋయ೏ೖ
ฯ lTT

~
x ฯ

ଶ
,                                                   (19) 

In the second section, it is shown that,  

 ቛ்ܠ∩ሺ ෨் ೗ି்೗ሻቛଶ
൑ 2‖ઽ‖ଶ,                                                       (20) 

 and finally,  

  ฮ்ି்ܠ೗ฮଶ ൑
dK

dK

3

3

1

1







ฯ lTT
~

x ฯ
ଶ
.                                            (21) 
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Proof: To prove (19), note that  x  is supported on T , i.e,  0=cT
x ,  

lTTlTTlTTTlTlTp ~~
†
~

†
~

†
~ ===


xDDxDDyDx  









 

 0
]   [=

~
~~

†
~~~

†
~

lTT
TlTlTTlTlTTlTTlT

x
DDDxDD  

lTTlTTlTlTlTlTlTTlTTlT
~~

†
~~~

†
~~~

†
~ =


 xDDxDDxDD  

   
.= ~~

†
~~ lTTlTTlTlT 

 xDDx                             (22) 

 In addition to,  

‖ઽ‖ଶ ൌ ฮܠ௣ െ ܠ ෨்೗ฮଶ

(22)

= ቛ൫۲ ෨் ೗
ு ۲ ෨் ೗൯

ିଵ
ሺ۲ ෨் ೗

ு ሺ۲்ି ෨் ೗ି்ܠ ෨் ೗ሻሻቛଶ
 

(3),BRIP

 ఋయ೏ೖ
ଵିఋ೏ೖ

ฯ lTT
~

x ฯ
ଶ
൑

ఋయ೏ೖ
ଵିఋయ೏ೖ

ฯ lTT
~

x ฯ
ଶ

. 

To prove (20), assume an arbitrary index set lTT
~'   that  ='TT  and KT |=| ' . It is clear that 'T  

exists because KTT l  |
~

| . 

Since,  

.==)(=)(=)( ''''~''~' TTTTlTTTlTTp εxεxεxεx   

so, we have  

ฯ ')(
Tpx ฯ

ଶ
൑ ‖ઽ‖ଶ 

According to the BSP algorithm, ll TT ~
 is chosen to contain the K  smallest projection coefficients. 

Therefore,  

 ብሺܠ௣ሻ l
T

l
T ~

ብ
ଶ

൑ ฯ ')(
Tpx ฯ

ଶ
൑ ‖ઽ‖ଶ	.                                           (23) 

By decomposition of the left hand side of (23),  

ብሺܠ௣ሻ l
T

l
T ~

ብ
ଶ

ൌ ฮሺઽ ൅ ܠ ෨் ೗ሻ ෨் ೗ି்೗ฮଶ ൌ ฮઽ ෨் ೗ି்೗൅ܠ ෨் ೗ି்೗ฮଶ 

 ൒ ብܠ l
T

l
T ~

ብ
ଶ

െ ብઽ l
T

l
T ~

ብ
ଶ

 ብܠ l
T

l
T ~

ብ
ଶ

൑ ብሺܠ௣ሻ l
T

l
T ~

ብ
ଶ

൅ ‖ઽ‖ଶ            (24) 

By combination of (23) and (24) and 
)

~
(

~ = lTlTTlTlT 
xx , we have,  

ฯ
)

~
( lTlTT 

x ฯ
ଶ

൑ 2‖ઽ‖ଶ. 

This derives the proof (20). Note that this result shows that the energy focused on the error signal 
components is small. 
Finally to prove (21), since  

,],[= ~
)

~
(

HH
lTT

H
lTlTTlTT 

xxx  

we have,  
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ฮ்ି்ܠ೗ฮଶ ൑ ቛ்ܠ∩ሺ ෨் ೗ି்೗ሻቛଶ
൅ ฮି்ܠ ෨் ೗ฮଶ

(20)

 2‖ઽ‖ଶ ൅ ฮି்ܠ ෨் ೗ฮଶ 

(19)

 ൬
ଷௗ௞ߜ2
1 െ ଷௗ௞ߜ

൅ 1൰ ฯ lTT
~

x ฯ
ଶ
ൌ
1 ൅ ଷௗ௞ߜ
1 െ ଷௗ௞ߜ

ฯ lTT
~

x ฯ
ଶ

 

which completes the proof. 

Theorem 4 is now considered, which helps to prove the sufficient condition presented in Theorem 1. 

Before it, we note that in the BSP algorithm the residue that was shown as "" ry  should be decreased in 

each iteration, i.e.,  

ฮܡ௥௟ฮଶ ൏ ฮܡ௥௟ିଵฮଶ 

Theorem 4. For each iteration of the BSP algorithm we have,  

ฮܡ௥௟ฮଶ ൑ K
dKdK

dK C
2

2

1

1






ฮܡ௥௟ିଵฮଶ, 

where .
)(1

)(12
= 3

3

33

dK

dKdK
KC







  

Proof:  

ฮܡ௥௟ฮଶ ൌ ฮresidሺܡ, ۲்೗ሻฮଶ ൌ ฮresid൫۲்ି்೗்ି்ܠ೗, ۲்೗൯ ൅ resid൫۲்೗்ܠ೗, ۲்೗൯ฮଶ 

ൌ ฮresid൫۲்ି்೗்ି்ܠ೗, ۲்೗൯ ൅ 0ฮ
ଶ

(7)

 ฮ۲்ି்೗்ି்ܠ೗ฮଶ ൑ dK1 ฮ்ି்ܠ೗ฮଶ 

 
(21)

 ඥ1 ൅ ௗ௞ߜ
ଵାఋయ೏ೖ
ଵିఋయ೏ೖ

ฮି்ݔ ෨் ೗ฮଶ

(9)

 ඥ1 ൅ ௗ௞ߜ
ଶఋయ೏ೖሺଵାఋయ೏ೖሻ

ሺଵିఋయ೏ೖሻయ
ฮ்ି்ܠ೗షభฮଶ

           (25) 

In addition  

ฮܡ௥௟ିଵฮଶ ൌ ฮresidሺܡ, ۲்೗షభሻฮଶ ൌ ฮresid൫۲்ି்೗షభ்ି்ܠ೗షభ, ۲்೗షభ൯ฮଶ 

(7)


1 െ ௗ௞ߜ െ ଶௗ௞ߜ

1 െ ௗ௞ߜ
ฮ۲்ି்೗షభ்ି்ܠ೗షభฮଶ ൒

1 െ ௗ௞ߜ െ ଶௗ௞ߜ
1 െ ௗ௞ߜ

ඥ1 െ ೗షభฮଶ்ି்ܠௗ௞ฮߜ
 

 ൌ
ଵିఋ೏ೖିఋమ೏ೖ
ඥଵିఋ೏ೖ

ฮ்ି்ܠ೗షభฮଶฮ்ି்ܠ೗షభฮଶ ൑
ඥଵିఋ೏ೖ

ଵିఋ೏ೖିఋమ೏ೖ
ฮܡ௥௟ିଵฮଶ             (26) 

Substituting (26) in (25),  

  ฮܡ௥௟ฮଶ ൑
ටଵିఋ೏ೖ

మ

ଵିఋ೏ೖିఋమ೏ೖ
.	
ଶఋయ೏ೖሺଵାఋయ೏ೖሻ

ሺଵିఋయ೏ೖሻయ
ฮܡ௥௟ିଵฮଶ                                       (27) 

Now, theorem 1 can be proven. From iteration stopping criterion, we have,  

     

ටଵିఋ೏ೖ
మ

ଵିఋ೏ೖିఋమ೏ೖ
.	
ଶఋయ೏ೖሺଵାఋయ೏ೖሻ

ሺଵିఋయ೏ೖሻయ
൏ 1                                                       (28) 

To solve the above Inequality, there are several methods which can be used. 

Method 1: Substitute dK3  for dK  and dK2  and change it into an inequality with only one variable 

and considering the permitted limits for variable dK3 , it can be calculated (as it was calculated in [22]). 

However, there are different methods with higher accuracy such as those shown below. 

Method 2: Using Maclaurin series expansion we have,  

),(1/21=)(1 1/2  xx  
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for some 0>    (if x > 0)      .)(1>1/21 1/2xx                              (29) 

 Therefore,  

                  
.

1

1/21
<

1

1

2

2(29)

2

2

dKdK

dK

dKdK

dK













                                                    (30) 

Hence, sufficient condition for the Inequality (28) is  

      1 < 
)(1

)(12
.

1

1/21
3

3

33

2

2

dK

dKdK

dKdK

dK













                                           (31) 

It is now possible to write dK3  versus dK  and dK2 , as 1<<0 32 dKdKdK    and 
1/22  dKdK  , the above problem would be changed into a non-linear optimization problem where 

different methods can be used to solve them. 
Method 3: There is an easier method to solve this problem and its accuracy is dependent on the steps 

that are used. Since the limits of our results are known 1)<<(0 3dK , all of the answers can be checked 
using simple computer programming precisely (for example, 0.0001) and the final answer can be 
achieved. The relationship dKdKdK 32    is also always considered. 

Method 3 has been selected to solve the Inequality (28). Then the result is obtained as 
0.1672<3dK , so the correctness of Theorem 1 is confirmed. As can be observed, the dependency of the 

upper limit to the value of K  was eliminated and we reached the upper limit of dK3  which was also 
independent of K . 
  

5. SIMULATION RESULTS 
 
With the purpose of evaluating the complexity and accuracy of our proposed algorithm, some simulation 
experiments have been carried out which are considered in the following. In our simulation, N  and L  
values are assumed to be 1000 and 400, respectively. Based on uniqueness theorem [23], the unique 
condition of the sparsest solution is:   ‖ܠ‖଴ 200=

2
<)(=

L
dK  . 

In order to change the block sparsity for a certain block length ( d ), the value of K  is varied from 1 
to 

ଶ଴଴

ௗ
 (for distinctive values of 2,5,8=d ). For every value of K  in a certain value of d , source vector of 

x  should be artificially generated. With the purpose of generating this block K -sparse signal, at first, the 
nonzero K  block location is randomly selected. Then, a value of normal distribution (0,1)N  is chosen 
for every d  element of selected block. The rest of K  selected blocks are considered to be equal to zero. 
For the sampling matrix D , elements are randomly chosen on the normal distribution and later it’s 
columns elements are normalized to unity. Considering vector x  and matrix D , the measurement vector 

y  is calculated. Based on the value of matrix D , vector y  and our proposed algorithm, the vector )ˆ(xx  
can be estimate. These experiments for each distinct value of d are repeated 200 times. For each iteration, 
the dimension of vectors and matrices stay constant, whilst the values of source vector x  and sampling 
matrix D  are randomly selected. The results are as follows: 
A) In figures 1,2, and 3, the frequency of exact reconstruction which is the criteria for the accuracy [5] 
against different levels are drawn for three different conditions d =2, d =5 and d =8. Our interest in these 
figures is the block sparsity level at which the frequency of exact reconstruction drops below 1. This level 
is named "critical block sparsity". As it can be concluded from the results of simulation, critical block 
sparsity of BSP algorithm by far exceeds the BOMP and mixed 12/ll -norm algorithms. We also see 
experimentally that BSP has better performance than SP when the source signal is block-sparse. The 
advantages of the BSP algorithm compared to the other considered methods, even though the block length 
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indices of blocks whilst considering the error occurance (BSP) is a faster method than selecting K  indices 
in the K  numbers of separate stages (BOMP). L2/L1 is the slowest because of using convex optimization 
methods. In addition, it can be seen that BSP has a better performance than SP in the recovery of block 
sparse signals. This is because BSP works directly with the block version of SP. 
 

Table 1. The average CPU time for all algorithms 

Block 
Length (d) 

Block Sparsity 
(K) 

SP 
(second) 

BOMP 
(second) 

L2/L1 
(second) 

BSP 
(second) 

2 1 0.015 0.006 9.98 0.012 
2 20 0.07 0.03 11.1 0.018 
2 100 0.075 0.47 12.1 0.064 
5 1 0.0178 0.004 5.3 0.007 
5 8 0.068 0.014 5.7 0.008 
5 40 0.088 0.19 7.6 0.057 
8 1 0.03 0.005 4.2 0.006 
8 5 0.06 0.01 4.4 0.007 
8 25 0.08 0.12 5.9 0.06 

 
6. CONCLUSION 

 
In this paper, for block-sparse signals recovery, an efficient new method is introduced, namely BSP. The 
motivation for studying block-sparse signals is that in many applications the nonzero elements of the 
interested signal appear in clusters. It is experimentally shown that BSP produces better recovery 
performance than SP, BOMP, and L2/L1 as well, because it is usually faster than them. In addition, the 
recovery performance of BSP using Block RIP was analyzed. It was shown that if sampling matrix D  
satisfies Block RIP with the constant parameter 0.1672<3dK , then BSP can exactly reconstruct any 
block K -sparse signal.  
 
Acknowledgment: This paper is the results of a research project that was supported by 
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support of the Telecommunication Research Center.  
 

REFERENCES 
 
1. Candès, E. J., Romberg, J. K. & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from 

highly incomplete frequency information. IEEE Trans. Inf. Theory, Vol. 52, No. 2, pp. 489-509.  

2. Donoho, D. L. (2006). Compressed sensing. IEEE Trans. Inf. Theory, Vol. 52, No. 4, pp. 1289-1306.  

3. Meng, J., Li, Y., Nguyen, N., Yin, W. & Han, Z. (2012). Compressive sensing based high-resolution channel 

estimation for OFDM system. IEEE Trans. Signal Process., Vol. 6, No. 1, pp. 15-25.  

4. Nikoofar, H. R. & Sharafat, A. R. (2010). Modulation classification for burst-mode QAM signals in multipath 

fading channels. IJST, Transactions of Electrical Engineering, Vol. 34, No. B3, pp. 257-274. 

5. Candès, E. J., Rudelson, M., Tao, T. & Vershynin, R. (2005). Error correction via linear programming. Proc. 

46th Annu. IEEE Symp. Foundations Computer Science (FOCS), pp. 668-681.  

6. http://www.dsp.ece.rice.edu/cs/.  

7. Eldar, Y. C., Kuppinger, P. & B¨olcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient 

recovery. IEEE Trans. Signal Process., Vol. 58, No. 6, pp. 3042-3054.  

8. Candès, E. J. & Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inf. Theory, Vol. 51, No. 12, pp. 

4203-4215.  

9. Chen, S. S., Donoho, D. L. & Saunders, M. A. (1999). Atomic decomposition by Basis Pursuit. SIAM J. Sci. 

Comput., Vol. 20, No. 1, pp. 33-61.  



A. Kamali et al. 
 

IJST, Transactions of Electrical Engineering, Volume 37, Number E1                                                                            June 2013 

14

10. Mallat, S. G. & Zhang, Z. (1993). Matching pursuits and time-frequency dictionaries. IEEE Trans. Signal 

Process., Vol. 41, No. 12, pp. 3397-3415.  

11. Candès, E. J., Romberg, J. & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate 

measurements. Comm. Pure Appl. Math., Vol. 59, pp. 1207-1223.  

12. Davenport, M. A. & Wakin, M. B. (2010). Analysis of orthogonal matching pursuit using the restricted isometry 

property. IEEE Trans. Inf. Theory, Vol. 56, No. 9, pp. 4395-4401.  

13. Mohimani, H., Babaie-Zadeh, M. & Jutten, C. (2009). A fast approach for overcomplete sparse decomposition 

based on smoothed 0l  norm. IEEE Trans. Signal Process., Vol. 57, No. 1, pp. 289-301.  

14. Mishali, M. & Eldar, Y. C. (2009). Blind multi-band signal reconstruction: Compressed sensing for analog 

signals. IEEE Trans. Signal Process., Vol. 57, No. 3, pp. 993-1009.  

15. Cotter, S. & Rao, B. (2002). Sparse channel estimation via matching pursuit with application to equalization. 

IEEE Trans. on Comm., Vol. 50, No. 3, pp. 374-377.  

16. Stojnic, M., Parvaresh, F. & Hassibi, B. (2010). On the reconstruction of block-sparse signals with an optimal 

number of measurements. IEEE Trans. Signal Process., Vol. 57, No. 8, pp. 3075–3085.  

17. Eldar, Y. C. & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE 

Trans. Inf. Theory, Vol. 55, No. 11, pp. 5302-5316.  

18. Baraniuk, R. G., Cevher, V., Duarte, M. F. & Hegde, C. (2010). Model-based compressive sensing. IEEE Trans. 

Inf. Theory, Vol. 56, No. 4, pp. 1982-2001.  

19. Needell, D. & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. 

Applied and Computational Harmonic Analysis, Vol. 26, No. 3, pp. 301-321.  

20. Hamidi Ghalehjegh, S., Babaie-Zadeh, M. & Jutten, C. (2010). Fast block-sparse decomposition based on SL0. 

9th Int. Conf. Latent Variable Analysis and Signal Separation (LVA/ICA), Saint Malo, France.  

21. Wang, J. J., Li, G., Zhang, H. & Wang, X. (2011). Analysis of block OMP using block RIP. CoRR, vol. 

abs/1104.1071.  

22. Dai, W. & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. 

Inf. Theory, Vol. 55, No. 5, pp. 2230-2249.  

23. Donoho, D. L. & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via l1 

minimization. Proc. Natl. Acad. Sci., Vol. 100, No. 5, pp. 2197-2202. 
 

APPENDIX A. PROOF OF LEMMA 1 

Based on Definition 1, for all d -block 'K -sparse ܠᇱ we have,  

)(1 d ᇱ‖ଶܠ‖
ଶ ൑ ᇱ‖ଶܠ۲‖

ଶ ൑ )(1 d ᇱ‖ଶܠ‖
ଶ  

and if we let 'dK
  be the infimum of all d ,  

)(1 'dK
 ᇱ‖ଶܠ‖

ଶ ൑ ᇱ‖ଶܠ۲‖
ଶ ൑ )(1 'dK

 ᇱ‖ଶܠ‖
ଶ 

while 'KK   implies that all d -block K -sparse Nx  can satisfy the above statement, therefore,  

)(1 'dK
 ଶ‖ܠ‖

ଶ ൑ ଶ‖ܠ۲‖
ଶ ൑ )(1 'dK

 ଶ‖ܠ‖
ଶ 

since dK  is defined as the infimum of all parameters d  that satisfy the recent inequality, we have,  

.'dKdK    
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APPENDIX B. PROOF OF LEMMA 2 

In the first part of Lemma, it is clear that if ‖܉‖ଶ ൌ 0 or	‖܊‖ଶ ൌ 0, then it is satisfied. Now, suppose they are both 

non-zero values and define  

/=' aa ,	ଶ‖܉‖ /=' bb ,	ଶ‖܊‖ .'='   ,'=' bDyaDx JI
 

 Considering the definition of BRIP and the following value,      

ቯ 







'

'

b

a
ቯ

ଶ

ଶ

ൌ 2, 

we have,  

             
)2(1 |)||(| JId  ൑ ቛ '' yx  ቛ

ଶ

ଶ
ൌ ቯ 








'

'
]  [

b

a
DD JI ቯ

ଶ

ଶ

),2(1  |)||(| JId  
      

 (B.1) 

and similarly,  

          )2(1 |)||(| JId  ൑ ቛ '' yx  ቛ
ଶ

ଶ
ൌ ቯ 








 '

'
]  [

b

a
DD JI ቯ

ଶ

ଶ

).2(1  |)||(| JId             (B.2) 

From (B.1) and (B.2) we have,  

ൌ

= >,< '' yx
ቛ '' yx  ቛ

ଶ

ଶ
െ ቛ '' yx  ቛ

ଶ

ଶ

4
, |)||(| JId  

 

and  

>,< '' yx =
ቛ '' yx  ቛ

ଶ

ଶ
െ ቛ '' yx  ቛ

ଶ

ଶ

4
, |)||(| JId    

Therefor  

>,|< bDaD JI

ଶ‖܊‖ଶ‖܉‖
ൌ >|,|< '' yx , |)||(| JId    

and then,  

 >|,|< bDaD JI  >|,|< bDaD JI ଶ‖܊‖ଶ‖܉‖ |)||(| JId  . 

To prove the second part of Lemma, it should be assumed that for any ܙ ∈ Թௗ|ூ|: ଶ‖ܙ‖ ൌ 1 

ቛ bDD J
H
I ቛ

ଶ
ൌ |)(|max bDqD

q
J

H
I = >|,|<max bDqD

q
JI  

൑ |)||(| max JId 
q

ଶ‖܊‖ଶ‖ܙ‖ ൌ |)||(| JId   ଶ‖܊‖

APPENDIX C. PROOF OF LEMMA 3 

 We have,  

))((= 1 yDDDDyDyD H
II

H
II

H
Ir

H
I

 0.=))((= 1 yDDDDDyD H
II

H
II

H
I

H
I

  

  
APPENDIX D. PROOF OF LEMMA 4 

 Suppose that pJ
H
JJp xDyDDy ==  and xDy I= . From (2)  and BRIP definition we have,  
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>|,>|=|<,|< xDxDyy IpJp ൑ |)||(| JId  ฮܠ௣ฮଶ‖ܠ‖ଶ

 

 

     ൑ |)||(| JId 
ฮܡ೛ฮమ

ටଵିఋ೏|಻|

మ‖ܡ‖

ටଵିఋ೏|಺|
൑

ఋ೏ሺ|಺|శ|಻|ሻ
ଵିఋౣ౗౮	ሺ೏|಺|,೏|಻|ሻ

ฮܡ௣ฮଶ‖ܡ‖ଶ                           (D.1) 

In addition , for the left side of the above inequality we can write,  

 
>,< = >,< rppp yyyyy  ൌ ฮܡ௣ฮଶ

ଶ                         (D.2) 

Therefore, from (D.1) and (D.2) we have,  

ฮܡ௣ฮଶ ൑
|)||,|(

|)||(|

1 JdIdmax

JId





  ଶ‖ܡ‖

In order to prove the Eq. (7) , triangular inequality is used as follows,  

௥‖ଶܡ‖ ൌ ฮܡ െ ௣ฮଶܡ ൒ ଶ‖ܡ‖ െ ฮܡ௣ฮଶ 

                        

  )
1

(1 
|)||,|(

|)||(|
(6)

JdIdmax

JId





  ଶ‖ܡ‖

                                                       (D.3) 

furthermore,  

 
      

௥‖ଶܡ‖ 
ଶ ൅ ฮܡ௣ฮଶ

ଶ
ൌ ଶ‖ܡ‖

ଶ                                                      (D.4) 

where	ฮܡ௣ฮଶ
ଶ
൒ 0 

From (D.3) and (D.4) we have,  
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JId


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

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