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Abstract– In the present work, three extrusion profiles have been investigated objectively, these 
are a conical, a cosine which is proposed in this study and a profile designed to impose equal strain 
increments over the equi-spaced sections. Each of them reduces a portion of the required power for 
extrusion. Conical profile provides the least frictional surface, cosine profile omits the surfaces of 
velocity discontinuity and the other profile reduces the power attributed to redundancy during 
deformation. However, the capability of these profiles in reducing the total power of the process is 
very different. Results suggest that cosine profile is the best energy-wise, whereas the profile 
which imposes equal strain increments over the equi-spaced sections provides the best distribution 
of strain in the product. In addition, a simple exponential equation as a function of die geometry is 
presented for the case of the profile which imposes equal strain increments over the equi-spaced 
sections.           
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1. INTRODUCTION 
 

Extrusion is one of the most well known methods of forming, responsible for production of a large 
fraction of different profiles. Many factors should be considered when the objective is to design an 
extrusion die, the most important of which is the inner shape of the die and hence the geometry of the 
deformation zone. Conventionally, square dies are used that simply consist of two channels that come 
together with an abrupt change in the cross section. Despite the simplicity of these dies, they cause some 
problems such as generation of dead metal zones, large redundant work and non-uniform flow of metals 
[1]. These problems have led to many investigations to remove these shortcomings. Also, the availability 
of CNC machining has encouraged the investigators to develop more complicated dies which can push 
extrusion to the limits of ideality [2].  Talebanpour et al. proposed non-collinear channels with specific 
channel intersection geometries to provide a more homogenous distribution of strain and a less power 
consuming extrusion method [3]. A great deal of research work has been dedicated to optimizing extrusion 
while conserving the conventionally of collinear inlet and outlet channels. Mihelic and Stok [4] studied 
optimizing die profiles through mathematical techniques and finite element discretization. They proposed 
polynomial curves for die profile. Lin et al. [5] presented their die profile by a cubic–spline curve and used 
an iterative approach called updated sequential quadratic programming to accomplish the optimum 
calculation for unsteady metal forming based on rigid–viscoplastic finite element method. Lee et al. [6] 
used flexible polyhedron search method to design an optimal die profile leading to a more uniform 
microstructure of extruded rods. They applied their calculated profiles in experiments to verify them. Kim 
et al. [7] proposed a process design method to control the strain rate of the deforming material inside the 
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die. They used a coupled numerical approach of finite element analysis and optimization technique to 
provide optimum profiled die capable of inducing uniform strain rate distribution. Wifi et al. [8] 
implemented an incremental slab method to obtain extrusion pressure for arbitrarily curved dies. They 
optimized the dies considering friction at the tool-workpiece interface, strain rate, and redundant 
deformation. They claimed that their curved die profile produced lower stress levels than those of 
optimized conical die profiles.  

Some investigators have shown that remarkable reduction in redundant work is achieved when 
streamlined flow of metal is imposed [1]. Streamlined dies are designed using different methods. Usually, 
mathematical expressions are fitted to build a suitable inner die surface boundary and then checked for 
validity by upper bound [9], genetic algorithm [10], or finite element methods [11]. In the current work, a 
streamlined die is proposed by a cosine expression for a thin walled tube extrusion in which the force 
required to perform the process is reduced with respect to other profiles. Upper bound approach and finite 
element simulations are used to compare the advantages of this profile with the most frequently used 
extrusion die profile (conical), as well as a profile providing constancy of the ratios of successive 
generalized homogenous strain increments (CRHS), first proposed by Blazynski [12]. 
 

2. THEORY AND CALCULATIONS 
 
Ultra low thickness tubes with wall thicknesses of 100-400 microns are essentially produced by large 
reduction extrusions, thus imposing a very high amount of strain on the material. Such severely 
accumulated strain in the limited deformation zone of a die will in turn cause non-homogenous material 
flow and an extensive amount of redundant work. Furthermore, as the material passes through the micron 
sized opening of the die, friction gets critical because the ratio of the surface to volume of the material 
increases drastically.  A precise die profile design seems necessary to reduce the amount of redundant 
work and produce more homogenous properties in the resulted tubes. Generally, for any metal forming 
process, the less redundant the work, the higher the quality of the product acquired and also less energy 
will be used for forming. Thus, the least possible amount of work should be taken into consideration in the 
design of die profile [12]. In the present work, objective comparison is made between three special cases 
of die profile, a conical die which offers the shortest frictional surface, cosine die in which the material 
flows in smooth streamlines with no abrupt change in its velocity, and a profile to impose a uniform 
accumulation of strain along the extrusion axis (CRHS die profile).  
 
a) CRHS method 
 

Constancy of the ratios of successive generalized homogeneous strain increments (CRHS) method is 
applied in design of various forming processes like tube extrusions, which results in reduction in 
redundancy. This method was first modeled by Blazynski [12]. As shown in Fig.1, deformation zone is 
divided into n equally spaced sections. CRHS relations are as follows [12]. 

 
Fig.1. Deformation zone in a tube extrusion die with CRHS profile [13] 
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where Hn  is the homogeneous strain of the material passing through the 0 th to the nth section and S is a 
constant. This homogeneous strain is a function of the sample geometry as its diameter or wall thickness 
[13]. The S parameter shows the rate of deformation and can be greater, lesser, or equal to 1. If S is 
considered equal to 1 to ensure a constant rate of deformation, then according to Eq. (1) strain increments 
will be constant along the deformation zone   

( nεdεdεdεd ==== 321  ) 

Current authors have used a simple method utilizing CRHS concept to derive the profile of the die. The 
proposed simple calculations are as follows.

 

Regarding Fig.1, homogeneous strain increment can be calculated as: 
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 where A is the current cross section area of the deforming sample in the deformation zone, and p is the 
summation of the perimeter of the current section of the profile and the perimeter of the inside hollow. d is 
the diameter of the mandrel and h is the current thickness of the tube. Homogeneous equivalent strain is 
then calculated as: 
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Regarding Eq. (5), the condition for the increments of strain to be constant over the length of the die can 
be formulated as Eq. (6).   

Cdzεd H =/                                                                 (6) 

where z is collinear with the axis of extrusion, and C is a constant. 
By integration of Eq. (6) over the deformation zone and using the boundary conditions 
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where fh   is the final thickness of the wall. 
The profile of the die is then calculated as follows: 

∫

∫

0

0

=

2

1

22

22

=

2

1

22

22

0

]
)+(

+3+3
[

3

2

]
)+(

+3+3
[

3

2

=
fh

hh

h

hh

dh
dhh

dhdh

dh
dhh

dhdh
z

z

                                              (8)                        
 



Z. Pahlevani and R. Ebrahimi 
 

IJST, Transactions of Mechanical Engineering, Volume 37, Number M2                                                                  October 2013 

206

The result of which has been plotted for 0<z<7.5 in Fig. 2. 
Blazinsky [12] used a numerical method to obtain the profile resulting in constant ratios of the 

successive generalized homogeneous strain increments as depicted in Fig. 2, which is very close to one 
obtained from Eq. (8).  

The latter equation can in turn be used to calculate the current thickness of the material being 
extruded , h(z), as a function of the length of the deformation region, L, the radius of the mandrel, Ri, the 
initial outer radius of the material, Ro, and the final outer radius of the material, Rf.  Due to the complexity 
of that equation, a simple curve fit on the points of that equation (as shown in Fig. 2) can be presented as 
an exponential form, which can be related to the specifications of the die to the following form:  
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This equation can be used to calculate the current outer radius of the material being extruded R(z) too, 
as follows:

                                 (10) 

 

 

 

Fig. 2. The die profile calculated by CRHS method 

Homogeneity of the distribution of straining over the deformation region results in a better flow of the 
material, thus reducing the redundant work during deformation.  
 

b) Upper bound calculations for tube extrusion through curved die profiles 
 

An upper-bound method proposed by Chang and Choi [14] is implemented to calculate the power 

dissipation in the curved die profiles. As it can be seen in Fig. 3, deformation takes place at region ІІ; Г1 

and Г2 are the velocity discontinuity surfaces, and Г3, Г4 are frictional surfaces. The profile is a function 

of z and is designated as R(z). 
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Fig. 3. Geometrical parameters in a curved die profile [14] 

The velocity of the material before entering the deformation region is 
0v , thus the horizontal velocity of 

the material in the deformation zone can be obtained regarding incompressibility of the material as: 
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The radial component of the velocity is proposed to be [14]: 
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Considering the axisymmetric nature of the process, the circumferential component of the velocity ( θv ) is 
equal to zero. Differentiating the velocity field with respect to coordinates results in the strain rate field: 
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As it can be seen, the necessary condition of volume constancy is satisfied ( 0=++ zzθθrr εεε  ). 
Upper-bound theorem assumes the total power required to carry out a process to be spent for deformation, 
crossing the surfaces of velocity discontinuity, overcoming friction, and occasionally displacing the 
external tractions on the material. 
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where k is the mean shear yield stress of the material and m is the constant friction factor. S , 
f

S and 
i

S  
stand for the areas of velocity discontinuity surfaces, frictional surfaces and traction surfaces respectively. 
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Based on the results of the compression test at room temperature, the Holloman's equation for the material 
used in this study was obtained as: MPa349.0106  . Therefore, the mean shear yield stress which is 
related to the mean flow stress,  , can be calculated (

3


k ).  

The differential volume element considered for the deformation zone aimed at calculating the first 
integral is: 

rdrdzπdV 2=                                                            (15) 

in which z varies from 0 to L and r from iR  to )(zR . 
Thus the first integral of Eq. (14) will be calculated as: 
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in which   )+)(3()(′-)-)()((′′)(=)( 22222
ii RzRzRRzRzRzRzF . 

The differential surface element for calculation of the second integral is considered to be: 

rdrπds 2=                                                                  (17) 

The velocity discontinuities on 1Γ and 2Γ  surfaces are: 
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Thus the second integral Eq. (14) is calculated as: 
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The differential surface elements for the frictional surfaces 3Γ  and 4Γ  are: 
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and the corresponding velocity discontinuities are: 
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The third integral Eq. (14) can then be calculated as: 
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The total power supplied by the external source to perform the process at a constant speed is the product 
of the force times the speed of the ram. The relative pressure of the extrusion can then be obtained: 

 

                                    (24) 

 

As it can be seen from Eq. (24), the geometry of the deformation zone can affect all three sources of 
power consumption. An inappropriate die profile can cause abrupt changes in the material velocity, 
making the flow inhomogeneous and producing redundant work. Moreover, the total length and the 
perpendicular pressure on the frictional surfaces are closely related to the geometry of the die profile. 
Friction can by itself alter the imposed strain on the material as well as raise the required forces for 
performing the process.  

c) Cosine die profile 

The more gradual the straining of the material is, the less power needed for the deformation portion 
of the total power. However, existence of the velocity discontinuity surfaces results in consumption of 
some unnecessary power (Fig. 3). If the die profile is designed to omit these surfaces and the material 
enters and exits the deformation zones with no abrupt change in its velocity vector, a considerable amount 
of power will be saved.  

As can be deduced from Eq. (19), velocity discontinuities on the 1Γ  and 2Γ  surfaces depend on the 
slope of the profile at the corresponding points. In the case of cosine profile, the slope at these points is 
zero and there is no velocity discontinuity. The general form of a cosine die profile can be considered as:
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Satisfying the boundary conditions 0→0 RRz  and fRRLz  → . 
 
d) Extrusion through specific die profiles 
 

Three die profiles are compared; a conical profile, a profile obtained from CRHS method, and a 
cosine die profile. The profiles for each case are: 
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Power dissipation is calculated for each case considering the same deformation condition. For each case 
two reductions in area are assumed; first, a 95.7% reduction in area (an initial tube of 7.5 mm in outer 
radius and 2.5 mm in inner radius is turned into a tube of 2.5 mm in inner radius but only a wall thickness 
of 400 microns.), and second, a 60% reduction in area (an initial tube of 7.5 mm in outer radius and 2.5 
mm in inner radius is turned into a tube of 2.5 mm in inner radius and a wall thickness of 2.6 mm). 
Numerical method was implemented to calculate the integrals since there are no simple forms for them to 
be calculated analytically.  

Strain distribution is evaluated in the deformation zone for each of the three cases and each of the two 
reductions in area. Equation (5) shows the increments of equivalent homogeneous strain in tube extrusion. 
h is the current thickness of the tube in the deformation zone and it can be written as iRzR -)( . Thus, dh 
as well as strain increment can be formulated as a function of z: 
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Strain is then plotted as a function of z, and the variations of dissipated power through z are investigated. 

e) Numerical evaluations 

Numerical simulations were implemented using commercial finite element code, DEFORM-2D, to 
verify the results of analytical calculation. The three profiles were modeled utilizing their axisymmetric 
geometry. A total number of 8000 square mesh elements were used for each case and the plastic flow and 
frictional behavior of the material obtained from compression test ( MPa349.0106   and 038.0 ) 
was inserted to the software. A length of 7.5 mm was used for the simulations that, for an initial outer 
radius of the material produces a nearly optimized deformation process for all the cases, which will be 
discussed later.  

 
3. RESULTS AND DISCUSSION 

a) Strain accumulation 

Figure 4 shows the accumulation of homogeneous strain for the different profiles and reductions in area. It 
is noted that normalized distance is the ratio of z to the length of deformation zone (L) and accumulated 
strain is the total homogeneous strain that material has experienced at every distance of deformation zone.  

The amount of homogenous strain is only a function of the initial and final areas and for all the cases 
with 95.7% reduction in area is 3.45. However, as it can be seen and was expected, the variation of strain 
with the length that the material has gone through the deformation zone is linear for CRHS profile and 
shows the most uniform accumulation of strain in this profile. For severe reductions in area, the deviation 
of strain accumulations for conical and cosine dies are more pronounced with respect to CHRS die, 
indicating that for higher amounts of reductions in area, the shape of the profile will more rigorously affect 
the accumulation of strain. 
 
d) Optimized die profile for tube extrusion 

Consumed power due to internal deformation, velocity discontinuities and frictional surfaces are 
calculated for each of the three cases and each of the two reductions in area. According to Fig. 5, total 
power dissipation at the end of the process is minimum for cosine die profile. 
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Fig. 4. Accumulation of homogenous strain during deformation, for 60% and 95.7% reductions in area 

The power dissipation due to velocity discontinuity for cosine profile is equal to zero, since the 

material enters and exits the deformation zone tangent to the streamlines of the deformation zone. The 

largest dissipation occurs for CRHS profile which gets larger as the reduction in area increases. The 

difference between conical die and CRHS profile rises with increasing reduction in area. Based on the 

calculation of power consumption for the first integral of Eq. (14) as internal deformation power, the least 

amount is consumed in CRHS profile. This is consistent with the fact that CRHS profile provides the most 

uniform and gradual strain accumulation and thus the least non-homogeneous deformation, which leads to 

lesser internal power consumption. It can be deduced that any increase in inhomogeneity of straining will 

cause more internal power dissipation for the process. As severe reductions in area result in generation of 

redundancy and inhomogeneous flow of the material, careful design of the style of accumulating strain can 

effectively reduce the required power. However, at low reductions in area, the differences between CRHS 

and the other profiles subside. Power dissipated on frictional surfaces depends on the length of the 

frictional surfaces as well as the normal pressure on these surfaces. The consumed power due to friction 

rises from the least amount for conical profile to the highest amount for CRHS method. 

Figure 5 shows the total consumed power during deformation. The end point of the diagrams show 

the sum of total consumed power for each profile. As depicted, this power is lowest for cosine profile, 

which is resulted from omission of the velocity discontinuities. As mentioned before, all the integrals for 

calculation of the powers are performed on the deformation zone from entrance to exit of the die to show 

the power consumption during deformation. 

Figure 6 shows the calculated relative extrusion pressure as a function of the normalized length of the 

dies for 60% and 95.7% reductions in area. According to this figure, the optimized relative die lengths for 

a 95.7% reduction in area are 1.2 for cosine, 1.3 for conical, and 1.06 for CRHS profiles. These quantities 

for a 60% reduction in area are 1.13, 1.19, and 1.13, respectively. In the case of 95.7% reduction in area, 

for relative die lengths less than 1.2, the minimum relative extrusion pressure corresponds to cosine 

profile. This is due to the omission of velocity discontinuities in this profile. Beyond this point, cosine 

profile crosses higher than conical die which is because of the rise in frictional power dissipation due to 

much longer frictional length of the die in cosine profile. In contrast, in the case of 60% reduction in area, 

for all values of relative die lengths, cosine profile offers the minimum required energy. In this case, due 

to the lower amount of reduction in area, the power required to overcome friction cannot outweigh the 

reduction in the power due to the omission of the velocity discontinuities. 
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Fig. 5. Total power dissipation during deformation for 60% and 95.7% reductions in area 
 

                  
Fig. 6. Relative extrusion pressure versus relative die length for different die  

profiles and two reductions in area 
 
c) Finite element simulation 
 

Figure 7 shows the strain contours for each of the three profiles. As seen, CRHS profile offers the 
most homogenous distribution of strain, the least amount of total strain with respect to the other two 
profiles and also straining takes place over the entire length of the profile. On the other side, conical 
profile can be considered as the worst case, in which straining begins much sooner for the material 
adjacent to the wall of the die, and there it gives the largest amount of total strain. These observations are 
consistent with the design factors of each die. CRHS profile was designed to provide a gradual and 
uniform straining over the length of the die and thus to minimize the amount of redundant strain during 
deformation. Therefore, occurrence of the least total strain and a uniform distribution of strain were 
expected. 



Optimization of specific die profiles in… 
 

October 2013                                                                  IJST, Transactions of Mechanical Engineering, Volume 37, Number M2   

213

  

 

Fig. 7. Color strain contours showing the distribution of strain in the three profiles 

Figure 8 shows the force for each process as a function of the punch stroke according to FEM and 
upper-bound solution. Cosine profile offers the least amount of the punch force. This is in total agreement 
with the upper-bound results. Regarding cosine profile, there is no surface of velocity discontinuity and so 
no power dissipated by the material to pass through it. Consequently, the total power and the required 
force for the process is the minimum. As discussed before, the minimum total strain and also the minimum 
internal deformation power consumption occurred in CRHS profile but the total power consumption and 
force is higher in CRHS profile compared with the two other profiles. Accordingly, it could be said that 
CRHS profile reduces only the internal power consumption, not the total power. But Cosine profile 
reduces the total power consumption by elimination of discontinuity surfaces.  

The differences in calculated force for extrusion between two solution methods are about 10 %. The 
difference in predicted force between cosine and conical profile is as small as 0.6 kN, which is in total 
agreement with the slight difference in punch force for cosine and conical profile according to FEM 
results (Fig. 8). It is emphasized that a small increase in load prediction by the theory is due to the nature 
of upper-bound method which over estimates the required load. Figure 8 also shows local peaks for CRHS 
and conical profiles, these peaks can be attributed to the sudden change in flow direction of materials 
entering deformation zone.  
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Fig. 8. The extrusion force versus punch stroke curves 

 
4. CONCLUSION 

 
Analytical calculations and finite element simulations for the three proposed profiles of tube extrusion 
were in good agreement and confirm that: 

1‐ Cosine profile offers the best energy wise efficiency for tube extrusion. In this profile, the 
extended contact length of the profile is compromised by the omission of any power consuming 
velocity discontinuity surface. 

2‐ CRHS profile is designed to uniformly accumulate strain over the length of the die. The 
homogenously distributed strain in CRHS profile generates the least amount of redundant strain 
during deformation and thus the least amount of the total strain. 

3‐ Straining begins immediately as the material enters CRHS profile, providing a very gradual 
deformation of the material over the whole length of the die. However, for the cosine profile the 
material travels a finite length inside the profile before bearing a considerable amount of strain. 
For the case of conical die, straining begins markedly sooner for the material adjacent to the wall 
of the profile causing a gradient of strain across the cross section of the material which is retained 
to the end of the process. 

4‐ For the case of CRHS profile, a simple exponential equation is presented as a function of die 
geometry. 
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