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Abstract– The main objective of this paper is to predict the warpage of a circular injection molded 
part based on different processing parameters. The selected part is used as spacers in automotive, 
transmission, and industrial power generation industries. The second goal is facilitating the setup 
of injection molding machine without (any) need for trial and error and reducing the setup time. To 
meet these objectives, an artificial neural network (ANN) model was presented. This model is 
capable of warpage prediction of injection molded plastic parts based on variable process 
parameters. Under different settings, the process was simulated by Moldflow and the warpage of 
the part was obtained. Initially, the effects of the melt temperature, holding pressure and the mold 
temperature on warpage were numerically analyzed. In the second step, a group of data that had 
been obtained from analysis results was used for training the ANN model. Also, another group of 
data was applied for testing the amount of ANN model prediction error. Finally, maximum error of 
ANN prediction was determined. The results show that the R-Squared value for data used for 
training of ANN is 0.997 and for the test data, is 0.995.           
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1. INTRODUCTION 
 

It would be difficult to imagine the modern world without plastics. Today, plastics are an integral part of 

everyone’s life. Properties of the plastic materials such as high strength to weight ratio, the volume to 

price ratio, corrosion resistance, ease and speed of production have resulted in an ever-increasing use of 

them. Nowadays, in new part designs, plastics are used not only as a material for producing parts but also 

as alternative material for the metal alloys [1]. 

Injection molding with its excellent dimensional tolerance is one of the most common 
methods in mass production of plastic parts. Generally, injection molded plastic parts do not need any 

finishing or secondary operations [2]. This process consists of four stages that include melting, injection, 

holding and cooling [3]. Process parameters, plastic material properties and product design criteria are the 

basic factors in determining the final product quality.  
Warpage of the molded plastic parts is one of the most important problems in injection molding 

process. Warped parts may not be functional or visually acceptable. Different shear rate profiles along the 
cross-section of part cause differences in orientation and these phenomena affect the shrinkage. Therefore, 
there will be variation in shrinkage in the part. Warpage occurs due to the non-uniform shear rate and 
temperature distribution in part material. Imbalance of shrinkage in any section of a part will produce a net 
force that could warp it. The stiffness of the part and the shrinkage imbalance level determine the warpage 
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amount. If the part is too stiff to allow deflection, residual stresses will be created in the part that may 
cause problems later in its life [4]. If the shrinkage of a material is completely isotropic with respect to 
thickness, flow direction and distance, and packing pressure plastic parts will not warp. Asymmetric 
shrinkage and unequal contraction in the different directions cause warpage. Moreover, process 
parameters such as melt temperature and holding pressure have an effect on the rate of shrinkage in the 
different directions [5, 6]. Thus, different melt temperature and holding pressure will affect the warpage 
amount of the part. Non-uniform shrinkage in different directions could be determined using the material 
pressure-volume-temperature (PVT) relation diagrams [7]. 

Temperature-based warpage is caused by anisotropic cooling distribution in the cavity [8]. Low 
thermal conductivity of the plastic materials is one of the major factors in anisotropic cooling across the 
part thickness. Moreover, the lower thermal conductivity means that the plastic inside the barrel is melted 
over a long period. In addition, the molten plastic will require more time to solidify inside the mold cavity. 
Low thermal conductivity makes it hard to provide a uniform cooling profile across the part thickness and 
anywhere in the part body. In practice, variations in the melt temperature and melt pressure from one point 
to another in other cavity do not allow a steady-state condition to be established to produce parts with 
repeatable quality [9]. For the polymers, the thermal conductivity varies with temperature, degree of 
crystallinity and level of orientation. 

Many researches have been carried out to analyze the relationships between process parameters and 
warpage of the plastic parts and decreasing the warpage [10-13]. In addition to the studies which focus on 
the relationship between the processing parameters and warpage, many researchers have proposed 
optimization methods for minimizing the warpage of the injection molded parts [10, 14]. Simplex 
algorithm [14], artificial neural network (ANN) [3, 15-19], genetic algorithm [9, 16, 20], Taguchi 
experimental design method [21] and fuzzy [22, 23] are the most preferred optimization methods found in 
the literature. 

In two different studies, Min and Postawa presented models for creating a relationship between the 
melt pressure and part dimensions [24, 25]. In injection molding process, several processing parameters 
and setting conditions have a non-linear influence on the quality of the final part. Due to the nonlinear 
relationship between the processing parameters and the part quality indicators, it is difficult to estimate the 
quality parameters accurately using mathematical models [26-28]. 

ANN is a very useful method for prediction of linear and nonlinear systems. It has been widely used 
in many areas, such as control, data compression, forecasting, optimization, pattern recognition, 
classification, speech, vision, etc. The use of the ANNs for modeling and prediction purposes has become 
increasingly popular during the last decades [29]. In various studies, the neural network algorithm was 
used to establish a more accurate model for processing parameters and product quality that could estimate 
the product quality parameters more accurately. To determine the optimum values of process parameters, 
an ANN model was presented [16, 29, 30]. Sheleshnejhad and Taghizadeh presented a neural network 
model with 3-3-1 architecture. The model was designed to predict the fine length of the molded parts 
based on the cavity pressure profile [15]. Changyu et al. in 2007 used a combination of artificial neural 
networks and genetic algorithms to optimize the injection molding process parameters [16]. Ning and Lau 
have proposed neural network model for dimensional control of the molded parts based on the inverse 
process model [29]. 

To ensure the quality of plastic parts, the importance of part design and mold design in the initial 
stage of product development and process conditions during the final production process should be 
considered. However, the most economical one, is changing the process parameters systematically for the 
optimal process conditions [31]. The presence of an ANN model will facilitate the injection molding 
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mold temperature (70, 45 and 20°C) were considered. As mentioned above, holding pressure (HP) was 
considered as a percentage of the maximum injection pressure (IP). 

For simulation, the CAD model was imported to MPI and meshed before analyzing. A three-node 
element was selected for meshing the part. The mesh type is a fusion surface mesh. The numbers of nodes 
are 1174, the numbers of triangular elements are 2204, average aspect ratio of triangle elements is 1.6801 
and maximum aspect ratio of triangle elements is 3.5959. The percentage of matched elements in the 
Fusion mesh is a key factor in determining the quality of the mesh, and that should be at least 85 [36]. In 
this research, the Match ratio is equal to 97%, which shows that the quality of mesh is acceptable. As 
shown in Fig. 1c, in order to cool the mold, there are three cooling channels with diameters of 10mm in 
each side of the mold.  The distance of cooling channels from mold surface is 15 mm and centre distance 
between adjacent cooling channels is 55 mm. 

By using full factorial experiment design method, combinations of mentioned levels were created. 
The total number of possible combinations or settings is 45. In this paper, simulations, which were done 
under the mentioned setting (45 setting), were named “Training Simulations”. By applying this setting, the 
simulated results were used for training ANN. Numbering of each test was performed based on the levels 
of each parameter. These values dictate the level of each factor: conventionally, 1 for the lowest level, 2 
for the second and 3 for the third and 4 for the fourth level. For example, in test T-423, digit 4 indicates 
fourth level of melt temperature (280 ºC), digit 2 indicates the second level of Holding pressure (75% of 
IP), and digit 3 indicates the third level of mold temperature (70 ºC). 

Table 2. Settings for Training Simulation and related results 

Test 
No. 

Process setting Simulated 
part 

warpage 
(mm) 

Test 
No. 

Process setting Simulated 
part 

warpage 
(mm) 

Melt 
temp. 
(°C) 

Holding 
pressure 

(%) 

Mold 
temp. 
(°C) 

Melt 
temp. 
(°C) 

Holding 
pressure 

(%) 

Mold 
temp. 
(°C) 

T-533 280 90 70 1.351 T-321 230 75 20 1.294 
T-532 280 90 45 1.368 T-313 230 60 70 1.517 
T-531 280 90 20 1.343 T-312 230 60 45 1.517 
T-523 280 75 70 1.500 T-311 230 60 20 1.499 
T-522 280 75 45 1.514 T-233 205 90 70 0.888 
T-521 280 75 20 1.491 T-232 205 90 45 0.893 
T-513 280 60 70 1.632 T-231 205 90 20 0.848 
T-512 280 60 45 1.642 T-223 205 75 70 1.185 
T-511 280 60 20 1.623 T-222 205 75 45 1.181 
T-433 255 90 70 1.241 T-221 205 75 20 1.146 
T-432 255 90 45 1.232 T-213 205 60 70 1.439 
T-431 255 90 20 1.229 T-212 205 60 45 1.433 
T-423 255 75 70 1.455 T-211 205 60 20 1.411 
T-422 255 75 45 1.464 T-133 180 90 70 0.527 
T-421 255 75 20 1.450 T-132 180 90 45 0.789 
T-413 255 60 70 1.556 T-131 180 90 20 0.896 
T-412 255 60 45 1.564 T-123 180 75 70 0.961 
T-411 255 60 20 1.555 T-122 180 75 45 0.989 
T-333 230 90 70 1.083 T-121 180 75 20 0.981 
T-332 230 90 45 1.100 T-113 180 60 70 1.310 
T-331 230 90 20 1.065 T-112 180 60 45 1.328 
T-323 230 75 70 1.314 T-111 180 60 20 1.328 
T-322 230 75 45 1.320      
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Table 2 shows the settings for different simulations and related results. The results of “Training 
Simulations” were used for training ANN model. Because of this, there should be another data for testing 
the created ANN model. Therefore, other simulations with random setting were carried out. In this paper, 
simulations done under random setting, were named “Testing Simulations". By applying the Test 
Simulations, the created ANN model can be tested. Test Simulations with random setting were carried out 
and so the relevant warpage was determined. These results are used for distinguishing ANN model errors 
to estimate the part warpage. 

In all of the simulations, coolant temperatures are considered 15 °C lower than mold surface 
temperature. Furthermore, water velocity of the cooling channels was set to 10 lit/min.  
 

4. EFFECTS OF PROCESSING PARAMETERS ON WARPAGE 
 
In the second step, effects of process parameters on warpage of part were investigated. By using the 
“Training Simulations” data, influence of each process parameter on warpage was investigated. Then, by 
combination of these parameters, the process was simulated with Moldflow Plastic Insight. Other molding 
parameters such as Injection time to fill (2 sec.), Holding time duration (10 sec.) and Cooling Time (18 
sec.) were considered as fixed. The total amount of warpage in each simulation is given in Table 2. 

The results show that creation of a specific relation between the selected process parameters and the 
amount of warpage is difficult. Hence, to predict the total warpage, creating an ANN model is necessary. 
By putting data into the created ANN model, the amount of warpage can be predicted. 

Table 2 shows the amount of warpage in “Training Simulations”. Maximum amount of warpage takes 
place in the simulation test number T-512 that is equal to 1.642 mm, in which the melt temperature is 
280°C, holding pressure is 60% of IP, and mold temperature is 45°C. Minimum amount of warpage takes 
place in simulation test number T-133 which is equal to 0.527 mm, with the melt temperature of 180 °C, 
holding pressure of 90% of IP, and mold temperature of 70°C. 
 

5. ARTIFICIAL NEURAL NETWORKS AND APPLICATION 
 
An artificial neural network model has several layers namely, first layer, hidden layer and last layer. The 
first layer is input layer, and the last one is the output layer. The input layer consists of all the input 
factors. The hidden layers process all data from the input layer. In the following step, the next hidden layer 
computes the output vector, and then this output vector is processed in the last layer (output layer) to 
create the final result. The hidden and output layers have a transfer function. In this paper, Fermi's 
function is used as a transfer function whose output lies between 0 and 1. Fermi's function was used as a 
transfer function in ANN models in previous researches [37, 38]. It is given in Eq. (1). 

	F ൌ
ଵ

൬ଵାୣ୶୮	ቀ‐ସ	൫‐.ହ൯ቁ൰
                                                    (1) 

where, Z is the weighted sum of the inputs, and is calculated in equation 2. 

	Z ൌ 	∑ I୧
୬
୧ୀଵ ൈ w୧                           (2) 

where, I is the input and w is the weight. 
In a neural network, the first important stage is the training step. In the training step, an input is 

introduced to the network accompanied by the desired output. Initially, the weights were set randomly. 
Since the output may not be what is expected, the weights may need to be altered. During the training 
phase, random weights are changed by the back-propagation algorithm to produce a satisfactory level of 
performance. Back Propagation algorithm is a learning technique that adjusts weights in neural network 
by propagating weight changes backward from the output to the input neurons [5]. The goal of the back-
propagation training algorithm is to minimize the global error. After training, the weights contain 
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meaningful information, whereas before training, they were random and had no meaning. When a 
satisfactory level of the performance is reached, the training will stop. Then the network uses these 
weights to make decisions. 

In this paper, to evaluate model performance, absolute fraction of variance (R-Squared (R2)) was 
computed from the results produced by the ANN model. R-Squared measures the proportion of the 
variation around the mean. R-square is 1 if the model fits perfectly. In addition, R-square of 0 indicates 
that the fit is no better than the simple mean model. R-Squared (R2) defined by Eq. (3):  

Rଶ ൌ 1‐ ቆ	
∑ 	൫‐൯

మ	


∑ 	ሺሻ
	


మ 	ቇ                                     (3)  

 
where, T is target value, O is output value. 

To ensure that the statistical distribution of values for each net input and output are roughly uniform, 
the inputs and output data should be normalized. The input and output data are normalized in the (0, 1) 
range with the Eq. (4). To train ANN model, all the Training Simulation data were normalized. 
Normalized data of “Training Simulations” are listed in Table 3. 

V ൌ 	0.1  0.8	 ൈ ቀ ିౣ

ౣ౮ିౣ
ቁ                                         (4) 

where, Vmin, and Vmax are the minimum and maximum of related data respectively. VR is real data obtained 
from simulation tests, and VN is normalized value of VR. 

Table 3. Normalized data of “Training Simulations” and resulted warpage 

Test 
No. 

Melt 
temp. 

Holding 
pressure 

Mold 
temp. 

Part 
warpage 

(Ti) 

Warpage 
predicted 
by ANN 

(Oi) 

Test No.
Melt 
temp. 

Holding 
pressure

Mold 
temp. 

Part 
warpage 

(Ti) 

Warpage 
predicted 
by ANN 

(Oi) 
T-533 0.9 0.9 0.9 0.6911 0.6917 T-321 0.5 0.5 0.1 0.6502 0.6518 
T-532 0.9 0.9 0.5 0.7033 0.6887 T-313 0.5 0.1 0.9 0.8103 0.8127 
T-531 0.9 0.9 0.1 0.6854 0.6864 T-312 0.5 0.1 0.5 0.8103 0.8053 
T-523 0.9 0.5 0.9 0.7981 0.8042 T-311 0.5 0.1 0.1 0.7974 0.8003 
T-522 0.9 0.5 0.5 0.8081 0.7989 T-233 0.3 0.9 0.9 0.3587 0.3585 
T-521 0.9 0.5 0.1 0.7916 0.7943 T-232 0.3 0.9 0.5 0.3622 0.3617 
T-513 0.9 0.1 0.9 0.8928 0.8917 T-231 0.3 0.9 0.1 0.3300 0.3259 
T-512 0.9 0.1 0.5 0.9000 0.8902 T-223 0.3 0.5 0.9 0.5720 0.5703 
T-511 0.9 0.1 0.1 0.8864 0.8881 T-222 0.3 0.5 0.5 0.5691 0.5731 
T-433 0.7 0.9 0.9 0.6117 0.6117 T-221 0.3 0.5 0.1 0.5440 0.5421 
T-432 0.7 0.9 0.5 0.6091 0.6091 T-213 0.3 0.1 0.9 0.7543 0.7561 
T-431 0.7 0.9 0.1 0.6015 0.6015 T-212 0.3 0.1 0.5 0.7500 0.7496 
T-423 0.7 0.5 0.9 0.8209 0.8209 T-211 0.3 0.1 0.1 0.7342 0.7430 
T-422 0.7 0.5 0.5 0.8153 0.8153 T-133 0.1 0.9 0.9 0.1000 0.1103 
T-421 0.7 0.5 0.1 0.8103 0.8103 T-132 0.1 0.9 0.5 0.2878 0.2957 
T-413 0.7 0.1 0.9 0.9599 0.9599 T-131 0.1 0.9 0.1 0.3643 0.3670 
T-412 0.7 0.1 0.5 0.9505 0.9505 T-123 0.1 0.5 0.9 0.4111 0.4071 
T-411 0.7 0.1 0.1 0.9404 0.9404 T-122 0.1 0.5 0.5 0.4316 0.4316 
T-333 0.5 0.9 0.9 0.4988 0.5024 T-121 0.1 0.5 0.1 0.4256 0.4268 
T-332 0.5 0.9 0.5 0.5110 0.5081 T-113 0.1 0.1 0.9 0.6617 0.6692 
T-331 0.5 0.9 0.1 0.4859 0.4864 T-112 0.1 0.1 0.5 0.6746 0.6666 
T-323 0.5 0.5 0.9 0.6646 0.6749 T-111 0.1 0.1 0.1 0.6746 0.6767 
T-322 0.5 0.5 0.5 0.6689 0.6693       

Several different architectures of ANN model were created in Pythia software in order to reach best 
performance. Finally, ANN model with a 3-5-3-1 architecture was selected and is shown in Fig. 2. In other 
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