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Abstract— The main objective of this paper is to predict the warpage of a circular injection molded
part based on different processing parameters. The selected part is used as spacers in automotive,
transmission, and industrial power generation industries. The second goal is facilitating the setup
of injection molding machine without (any) need for trial and error and reducing the setup time. To
meet these objectives, an artificial neural network (ANN) model was presented. This model is
capable of warpage prediction of injection molded plastic parts based on variable process
parameters. Under different settings, the process was simulated by Moldflow and the warpage of
the part was obtained. Initially, the effects of the melt temperature, holding pressure and the mold
temperature on warpage were numerically analyzed. In the second step, a group of data that had
been obtained from analysis results was used for training the ANN model. Also, another group of
data was applied for testing the amount of ANN model prediction error. Finally, maximum error of
ANN prediction was determined. The results show that the R-Squared value for data used for
training of ANN is 0.997 and for the test data, is 0.995.
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1. INTRODUCTION

It would be difficult to imagine the modern world without plastics. Today, plastics are an integral part of
everyone’s life. Properties of the plastic materials such as high strength to weight ratio, the volume to
price ratio, corrosion resistance, ease and speed of production have resulted in an ever-increasing use of
them. Nowadays, in new part designs, plastics are used not only as a material for producing parts but also
as alternative material for the metal alloys [1].

Injection molding with its excellent dimensional tolerance is one of the most common
methods in mass production of plastic parts. Generally, injection molded plastic parts do not need any
finishing or secondary operations [2]. This process consists of four stages that include melting, injection,
holding and cooling [3]. Process parameters, plastic material properties and product design criteria are the
basic factors in determining the final product quality.

Warpage of the molded plastic parts is one of the most important problems in injection molding
process. Warped parts may not be functional or visually acceptable. Different shear rate profiles along the
cross-section of part cause differences in orientation and these phenomena affect the shrinkage. Therefore,
there will be variation in shrinkage in the part. Warpage occurs due to the non-uniform shear rate and
temperature distribution in part material. Imbalance of shrinkage in any section of a part will produce a net
force that could warp it. The stiffness of the part and the shrinkage imbalance level determine the warpage
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amount. If the part is too stiff to allow deflection, residual stresses will be created in the part that may
cause problems later in its life [4]. If the shrinkage of a material is completely isotropic with respect to
thickness, flow direction and distance, and packing pressure plastic parts will not warp. Asymmetric
shrinkage and unequal contraction in the different directions cause warpage. Moreover, process
parameters such as melt temperature and holding pressure have an effect on the rate of shrinkage in the
different directions [5, 6]. Thus, different melt temperature and holding pressure will affect the warpage
amount of the part. Non-uniform shrinkage in different directions could be determined using the material
pressure-volume-temperature (PVT) relation diagrams [7].

Temperature-based warpage is caused by anisotropic cooling distribution in the cavity [8]. Low
thermal conductivity of the plastic materials is one of the major factors in anisotropic cooling across the
part thickness. Moreover, the lower thermal conductivity means that the plastic inside the barrel is melted
over a long period. In addition, the molten plastic will require more time to solidify inside the mold cavity.
Low thermal conductivity makes it hard to provide a uniform cooling profile across the part thickness and
anywhere in the part body. In practice, variations in the melt temperature and melt pressure from one point
to another in other cavity do not allow a steady-state condition to be established to produce parts with
repeatable quality [9]. For the polymers, the thermal conductivity varies with temperature, degree of
crystallinity and level of orientation.

Many researches have been carried out to analyze the relationships between process parameters and
warpage of the plastic parts and decreasing the warpage [10-13]. In addition to the studies which focus on
the relationship between the processing parameters and warpage, many researchers have proposed
optimization methods for minimizing the warpage of the injection molded parts [10, 14]. Simplex
algorithm [14], artificial neural network (ANN) [3, 15-19], genetic algorithm [9, 16, 20], Taguchi
experimental design method [21] and fuzzy [22, 23] are the most preferred optimization methods found in
the literature.

In two different studies, Min and Postawa presented models for creating a relationship between the
melt pressure and part dimensions [24, 25]. In injection molding process, several processing parameters
and setting conditions have a non-linear influence on the quality of the final part. Due to the nonlinear
relationship between the processing parameters and the part quality indicators, it is difficult to estimate the
quality parameters accurately using mathematical models [26-28].

ANN is a very useful method for prediction of linear and nonlinear systems. It has been widely used
in many areas, such as control, data compression, forecasting, optimization, pattern recognition,
classification, speech, vision, etc. The use of the ANNs for modeling and prediction purposes has become
increasingly popular during the last decades [29]. In various studies, the neural network algorithm was
used to establish a more accurate model for processing parameters and product quality that could estimate
the product quality parameters more accurately. To determine the optimum values of process parameters,
an ANN model was presented [16, 29, 30]. Sheleshnejhad and Taghizadeh presented a neural network
model with 3-3-1 architecture. The model was designed to predict the fine length of the molded parts
based on the cavity pressure profile [15]. Changyu et al. in 2007 used a combination of artificial neural
networks and genetic algorithms to optimize the injection molding process parameters [16]. Ning and Lau
have proposed neural network model for dimensional control of the molded parts based on the inverse
process model [29].

To ensure the quality of plastic parts, the importance of part design and mold design in the initial
stage of product development and process conditions during the final production process should be
considered. However, the most economical one, is changing the process parameters systematically for the
optimal process conditions [31]. The presence of an ANN model will facilitate the injection molding
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machine primary setup; the reason is that ANN could omit all trial-and-error activities and will prevent
wasting of plastic material in a trial-and-error process. In addition, this would reduce machine stop time.

Other studies found in the literature reported that the most effective process parameters on warpage
are the packing pressure and the melt temperature [31, 32]. In simulation of plastic injection molding
process, computer aided engineering software (CAE) is presented. One of the specialized and applicable
software(s) used in this field, is the Moldflow Plastic Insight. To simulate the injection molding process,
this software was used in several studies [10, 21, 33, 34].

In this study, in the first step, warpage of circular plastic part was determined by computer-aided
simulation according to various process parameters. Then effects of the process parameters on the part
warpage were investigated. Finally, to predict product warpage by means of different simulation results, a
neural network model was created and then the amount of ANN model prediction error was determined.

2. MATERIALS AND METHODS

The selected part for this research is a circular disc whose drawing and schematic 3D-view is shown in
Fig. 1a and 1b. Parts with similar geometry are used as trust washers, shims, U-flanges and spacers in
automotive, transmission, and industrial power generation. The reason for choosing this geometry as a part
is that the form tolerances of such parts are important because of their function. Low Density Poly
Ethylene (LDPE) with “M-201; Asia Poly” commercial name, was selected as a polymer material for
simulation of the plastic injection molding process. Properties of this plastic are shown in Table 1 [35].
Finite element analysis results were obtained by Moldflow Plastics Insight (MPI) software. Gate was
located on the parting line and outer diameter of the part as shown in Fig. 2.
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Fig. 1. a) Schematic 3D-view of the part. b) Drawing of the part. ¢) Finite Element
model of the part, cooling channels and position of the gate

Table 1. Recommended process parameters for LDPE

Melt Mold Ejection Thermal

Nzrlnisle(;f Trade name temperature temperature temperature conductivity S??fﬁﬁﬁ,gat
P &) () O (Wimec) M
Low Density - M-201: 406 7e5 2070 80 031 3400

Poly Ethylene  Asia Poly

3. FINITE ELEMENT ANALYSIS (FEA)

In this study, according to recommended process parameters of selected material (LDPE), recommended
melt temperature values for LDPE vary from 180 to 280 °C, and permissible mold temperature values
vary from 20 to 70 °C. For simulations, five levels of melt temperature (280, 255, 230, 205 and 180°C),
three levels of holding pressure (90, 75 and 60% of maximum injection pressure (IP)) and three levels for
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mold temperature (70, 45 and 20°C) were considered. As mentioned above, holding pressure (HP) was
considered as a percentage of the maximum injection pressure (IP).

For simulation, the CAD model was imported to MPI and meshed before analyzing. A three-node
element was selected for meshing the part. The mesh type is a fusion surface mesh. The numbers of nodes
are 1174, the numbers of triangular elements are 2204, average aspect ratio of triangle elements is 1.6801
and maximum aspect ratio of triangle elements is 3.5959. The percentage of matched elements in the
Fusion mesh is a key factor in determining the quality of the mesh, and that should be at least 85 [36]. In
this research, the Match ratio is equal to 97%, which shows that the quality of mesh is acceptable. As
shown in Fig. 1c, in order to cool the mold, there are three cooling channels with diameters of 10mm in
each side of the mold. The distance of cooling channels from mold surface is 15 mm and centre distance
between adjacent cooling channels is 55 mm.

By using full factorial experiment design method, combinations of mentioned levels were created.
The total number of possible combinations or settings is 45. In this paper, simulations, which were done
under the mentioned setting (45 setting), were named “Training Simulations”. By applying this setting, the
simulated results were used for training ANN. Numbering of each test was performed based on the levels
of each parameter. These values dictate the level of each factor: conventionally, 1 for the lowest level, 2
for the second and 3 for the third and 4 for the fourth level. For example, in test T-423, digit 4 indicates
fourth level of melt temperature (280 °C), digit 2 indicates the second level of Holding pressure (75% of
IP), and digit 3 indicates the third level of mold temperature (70 °C).

Table 2. Settings for Training Simulation and related results

Process setting Simulated Process setting Simulated

Test  Melt  Holding  Mold part | Test  nrojt Holding Mold ~ Part
No. temp. pressure temp. APage No. temp. pressure temp.  APage

O % (o (W O %) (o ()
T-533 280 90 70 1351 |T-321 230 75 20 1294
T-532 280 90 45 1368 |T-313 230 60 70 1.517
T-531 280 90 20 1343 |T-312 230 60 45 1.517
T-523 280 75 70 1500 |T-311 230 60 20 1.499
T-522 280 75 45 1514 |T-233 205 90 70 0.888
T-521 280 75 20 1491 |T-232 205 90 45 0.893
T-513 280 60 70 1632 |T-231 205 90 20 0.848
T-512 280 60 45 1642 |T-223 205 75 70 1.185
T-511 280 60 20 1623 |T-222 205 75 45 1.181
T-433 255 90 70 1241 |T-221 205 75 20 1.146
T-432 255 90 45 1232 |T-213 205 60 70 1.439
T-431 255 90 20 1229 |T-212 205 60 45 1.433
T-423 255 75 70 1455 |T-211 205 60 20 1411
T-422 255 75 45 1464 |T-133 180 90 70 0527
T-421 255 75 20 1450 |T-132 180 90 45 0.789
T-413 255 60 70 1556 |T-131 180 90 20  0.896
T-412 255 60 45 1564 |T-123 180 75 70  0.961
T-411 255 60 20 1555 |T-122 180 75 45 0.989
T-333 230 90 70 1083 |T-121 180 75 20 0.981
T332 230 90 45 1100 |T-113 180 60 70 1310
T-331 230 90 20 1065 |T-112 180 60 45 1.328
T-323 230 75 70 1314 |T-111 180 60 20 1.328
T-322 230 75 45 1.320
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Table 2 shows the settings for different simulations and related results. The results of “Training
Simulations” were used for training ANN model. Because of this, there should be another data for testing
the created ANN model. Therefore, other simulations with random setting were carried out. In this paper,
simulations done under random setting, were named “Testing Simulations". By applying the Test
Simulations, the created ANN model can be tested. Test Simulations with random setting were carried out
and so the relevant warpage was determined. These results are used for distinguishing ANN model errors
to estimate the part warpage.

In all of the simulations, coolant temperatures are considered 15 °C lower than mold surface
temperature. Furthermore, water velocity of the cooling channels was set to 10 lit/min.

4. EFFECTS OF PROCESSING PARAMETERS ON WARPAGE

In the second step, effects of process parameters on warpage of part were investigated. By using the
“Training Simulations” data, influence of each process parameter on warpage was investigated. Then, by
combination of these parameters, the process was simulated with Moldflow Plastic Insight. Other molding
parameters such as Injection time to fill (2 sec.), Holding time duration (10 sec.) and Cooling Time (18
sec.) were considered as fixed. The total amount of warpage in each simulation is given in Table 2.

The results show that creation of a specific relation between the selected process parameters and the
amount of warpage is difficult. Hence, to predict the total warpage, creating an ANN model is necessary.
By putting data into the created ANN model, the amount of warpage can be predicted.

Table 2 shows the amount of warpage in “Training Simulations”. Maximum amount of warpage takes
place in the simulation test number T-512 that is equal to 1.642 mm, in which the melt temperature is
280°C, holding pressure is 60% of IP, and mold temperature is 45°C. Minimum amount of warpage takes
place in simulation test number T-133 which is equal to 0.527 mm, with the melt temperature of 180 °C,
holding pressure of 90% of IP, and mold temperature of 70°C.

5. ARTIFICIAL NEURAL NETWORKS AND APPLICATION

An artificial neural network model has several layers namely, first layer, hidden layer and last layer. The
first layer is input layer, and the last one is the output layer. The input layer consists of all the input
factors. The hidden layers process all data from the input layer. In the following step, the next hidden layer
computes the output vector, and then this output vector is processed in the last layer (output layer) to
create the final result. The hidden and output layers have a transfer function. In this paper, Fermi's
function is used as a transfer function whose output lies between 0 and 1. Fermi's function was used as a
transfer function in ANN models in previous researches [37, 38]. It is given in Eq. (1).

1

F=rF7—7F—— 1
<1+exp(-4 (Z—O.S))) ( )
where, Z is the weighted sum of the inputs, and is calculated in equation 2.
Z= Y.l xw (2)

where, | is the input and w is the weight.

In a neural network, the first important stage is the training step. In the training step, an input is
introduced to the network accompanied by the desired output. Initially, the weights were set randomly.
Since the output may not be what is expected, the weights may need to be altered. During the training
phase, random weights are changed by the back-propagation algorithm to produce a satisfactory level of
performance. Back Propagation algorithm is a learning technique that adjusts weights in neural network
by propagating weight changes backward from the output to the input neurons [S]. The goal of the back-
propagation training algorithm is to minimize the global error. After training, the weights contain
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meaningful information, whereas before training, they were random and had no meaning. When a
satisfactory level of the performance is reached, the training will stop. Then the network uses these
weights to make decisions.

In this paper, to evaluate model performance, absolute fraction of variance (R-Squared (R?)) was
computed from the results produced by the ANN model. R-Squared measures the proportion of the
variation around the mean. R-square is 1 if the model fits perfectly. In addition, R-square of 0 indicates
that the fit is no better than the simple mean model. R-Squared (R?) defined by Eq. (3):

% (Ti-01)°
RZ=1-( =1
( %i (0 ) )

where, T is target value, O is output value.
To ensure that the statistical distribution of values for each net input and output are roughly uniform,
the inputs and output data should be normalized. The input and output data are normalized in the (0, 1)
range with the Eq. (4). To train ANN model, all the Training Simulation data were normalized.
Normalized data of “Training Simulations” are listed in Table 3.
Vy = 01408 x ([RTmn) &)

Vmax—Vmin

where, Vpin, and Vimax are the minimum and maximum of related data respectively. Vr is real data obtained
from simulation tests, and Vy is normalized value of V.

Table 3. Normalized data of “Training Simulations” and resulted warpage

. Part Warpage . Part Warpage
Test Melt Holding Mold wWarpage predicted Test No Melt  Holding  Mold warpage predicted
No. temp. pressure temp. by ANN " temp. pressure temp. by ANN
T O) (19 O)
T-533 0.9 0.9 0.9 0.6911 0.6917 | T-321 0.5 0.5 0.1 0.6502  0.6518
T-532 0.9 0.9 0.5 0.7033 0.6887 | T-313 0.5 0.1 0.9 0.8103  0.8127
T-531 0.9 0.9 0.1 0.6854 0.6864 | T-312 0.5 0.1 0.5 0.8103  0.8053
T-523 0.9 0.5 0.9 0.7981 0.8042 | T-311 0.5 0.1 0.1 0.7974  0.8003
T-522 0.9 0.5 0.5 0.8081 0.7989 | T-233 0.3 0.9 0.9 0.3587  0.3585
T-521 09 0.5 0.1 0.7916 0.7943 | T-232 0.3 0.9 0.5 0.3622 0.3617
T-513 0.9 0.1 0.9 0.8928 0.8917 | T-231 0.3 0.9 0.1 0.3300 0.3259
T-512 0.9 0.1 0.5 0.9000 0.8902 | T-223 0.3 0.5 0.9 0.5720  0.5703
T-511 0.9 0.1 0.1 0.8864 0.8881 | T-222 0.3 0.5 0.5 0.5691  0.5731
T-433 0.7 0.9 0.9 0.6117 0.6117 | T-221 0.3 0.5 0.1 0.5440  0.5421
T-432 0.7 0.9 0.5 0.6091 0.6091 | T-213 0.3 0.1 0.9 0.7543  0.7561
T-431 0.7 0.9 0.1 0.6015 0.6015 | T-212 0.3 0.1 0.5 0.7500  0.7496
T-423 0.7 0.5 0.9 0.8209 0.8209 | T-211 0.3 0.1 0.1 0.7342  0.7430
T-422 0.7 0.5 0.5 08153 0.8153 | T-133 0.1 0.9 0.9 0.1000  0.1103
T-421 0.7 0.5 0.1 0.8103 0.8103 | T-132 0.1 0.9 0.5 0.2878  0.2957
T-413 0.7 0.1 0.9 09599 0.9599 | T-131 0.1 0.9 0.1 0.3643  0.3670
T-412 0.7 0.1 0.5 09505 09505 | T-123 0.1 0.5 0.9 04111  0.4071
T-411 0.7 0.1 0.1 09404 09404 | T-122 0.1 0.5 0.5 0.4316 0.4316
T-333 0.5 0.9 0.9 0.4988 0.5024 | T-121 0.1 0.5 0.1 0.4256  0.4268
T-332 0.5 0.9 0.5 0.5110 0.5081 | T-113 0.1 0.1 0.9 0.6617  0.6692
T-331 0.5 0.9 0.1 0.4859 0.4864 | T-112 0.1 0.1 0.5 0.6746  0.6666
T-323 0.5 0.5 0.9 0.6646 0.6749 | T-111 0.1 0.1 0.1 0.6746  0.6767
T-322 0.5 0.5 0.5 0.6689 0.6693

Several different architectures of ANN model were created in Pythia software in order to reach best
performance. Finally, ANN model with a 3-5-3-1 architecture was selected and is shown in Fig. 2. In other
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words, the created ANN has three inputs and five neurons in the first hidden layer, three neurons in the
second hidden layer and one neuron in last layer or output layer. Inputs for the ANN are plastic melt
temperature, holding pressure and mold temperature. Output layer has only one neuron that represents the
warpage.

Inputs Hidden layers Output

Fig. 2. Architecture of created ANN model

The formula of the first hidden layer with five neurons is given in Eq. (5) and the formula of the second
hidden layer with three neurons is given in Eq. (6). The formula of the output layer with one neuron is
given in Eq. (7). If injection parameters are known, with these equations, the amount of warpage could be
calculated.

1

, (for j=1 to 5) ®))

(1+eXp(-4—X(11XW11+12XW12+I3XW13'0.5)))

N = ! , (for j=6 to 8) (6)

(1+exp(-4><(N1><w21+N2><W22+N3 ><w23+N4><w24+N5><w25-0.5)))

1

= (7)

(1+exp(-4><(N6><w31+N7><w32+N8><w33-O.5)))
where, 1, [, and I; are normalized value of melt temperature, holding pressure and mold temperature
respectively and w is the weight for each neuron.

Weights of each neuron are listed in Table 4. For example, according to Table 4, for calculating N,
w13 (the weight for I5) is equal to -0.015087 and to calculate N;, wy; (the weight for N;) is equal to
2.788553. To calculate O, w33 (the weight for Ny) is equal to -1.319948. N, to N5 are the output values of
first hidden layer and N to Ny are the output values of second hidden layer and O is the final output.

As mentioned previously, the results of “Training Simulations” were used for training of ANN model
and results of Testing Simulation were used for distinguishing ANN model errors in warpage estimation.
Settings and results of Testing Simulations are listed in Table 5. Outputs of ANN model are in (0, 1)
range. To obtain the actual values of predicted warpage, all the results were re-normalized by equation 8.
Re-normalized values are listed in Table 5.

Table 4. Weight of each neuron in the ANN model

. Output
First Layer Second Layer Layer
Weight N1 N2 N3 N4 N5 N6 N7 N8 (0]

W1 2.899414 0.596148 -2.335289 0.587112 -2.543607|-0.972153 0.361672 -1.122330 |0.977077
W2  -1.073932 -0.424527 1.062468 -0.722455 1.321112 | 0.532098 1.652928 -0.022480 |0.948488
W3 4.553558 -0.015087 -1.594293 0.061561 -0.183996 |-0.700208 2.788553 -1.695445 |-1.319948
W4 2.229601 1.578676 1.203406
W5 0.624063 0.027321 2.163266
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Table 5. Results of Testing Simulation and predicted warpage by ANN and amount of error

Holding . Warpage . . Warpage
Test Tl\é[;l; Pressure }\/el 12113 S\)lvn;urgztge: Predicted Error |Test Tl\:rilrt) IEIr le(ilunri %\: fnls S\;,n;;l;igs Predicted Error
N . o . . o

Yoeo) T eor mmy PN 09RO ooy gportp) (o) ) AN 9
T1 270 80 50 1.440 1.435 -0.347|T11 215 76 38 1.212 1.223  0.908
T2 270 70 40 1.527 1.519 -0.524|T12 203 67 49 1.314 1.312 -0.152
T3 260 65 60 1.557 1.552 -0.321|T13 190 72 62 1.129 1.150 1.860
T4 260 78 35 1.417 1.418 0.071|T14 192 81 47 0.958 0.981 2.401
T5 260 85 65 1.328 1.323 -0.377|T15 198 75 23 1.102 1.138  3.267
T6 250 77 48 1.396 1.392  -0.287|T16 210 70 40 1.289 1.297 0.621
T7 245 82 25 1.280 1.283  0.234|T17 266 65 69 1.561 1.575 0.897
T8 240 80 56 1.312 1.292 -1.524|{T18 205 78 51 1.134 1.138 0.353
T9 213 90 28 1.050 1.078 2.667|T19 191 73 63 1.115 1.139  2.152
T10 220 82 59 1.162 1.147 -1.291

VR = Vmin + W (Vmax'vmin) (8)

where, Viuin, and V. are the minimum and maximum of data respectively. Vy is normalized value that
was obtained from ANN model prediction, and Vy is the real value of Vy.

To determine the accuracy of ANN model for each test, the predictive system error was calculated by
Eq. (9) and the error results are given in Table 5. To evaluate the total accuracy of the ANN model, R-
Squared (R?) was used. R-Squared of data used for training of ANN model is equal to 0.997. This shows
that ANN model fits perfectly, and its performance in training data is satisfactory. Then R-Squared was
calculated for Testing Simulations. R-Squared for data that were not used in the training phase of ANN
model is equal to 0.995 as shown in Fig. 3. This shows that the performance of ANN model is also
satisfactory for random data that were not trained. Comparison of the simulated warpage with the ANN
results is graphically shown in Fig. 3.

Predicted value-Simulated value
Error = X 100% )]

Simulated value

n

s

R2? = 0.995

w

Predicted Warpage of Part by ANN
for Testing data that are not used for
training (mm)

Z

o
w0

1.1 1.2 1.3 1.4 1.5 16
Simulated Warpage (mm)

S
©

Fig. 3. Comparison of the simulated warpage and predicted warpage by ANN
model for testing data not used for training.

6. RESULTS AND DISCUSSION

According to the warpage simulation results, it is determined that melt temperature: and holding pressure
are more effective parameters than the mold temperature. Figure 4 helps us to get a better view of the
simultaneous influence of melt temperature and holding pressure in total warpage. As shown in Fig. 4,
with an increase in the melt temperature, the warpage increases. For example, in four simulation tests (test
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numbers 433, 333, 231 and 133), the mold temperature and holding pressure were held constant but melt
temperatures were 280, 230, 205 and 180 and related warpage amounts were 1.351, 1.083, 0.888 and
0.527mm respectively. With an increase in holding pressure, the warpage decreases. For example, in three
simulation tests (test numbers 233, 223 and 213), the mold temperature and melt temperature were held
constant but holding pressures were 90, 75 and 60% of IP and related warpage amounts were 0.888, 1.185
and 1.439 mm respectively. In Figs. 4, 5 and 6 the straight lines with filled circle represent the simulation
results, and the dashed lines with unfilled circle represent the ANN model predicted results.

In Fig. 5, simultaneous effects of melt temperature and mold temperature on the warpage amount at
constant holding pressure (75% of IP) are shown. In Fig. 6, simultaneous effects of holding pressure and
mold temperature on the warpage amount at constant melt temperature (230°C) are shown. As shown in
Figs. 5 and 6, when the melt temperature and holding pressure are constant with a change in mold
temperature, no significant change is observed in the amount of warpage. Therefore, one can say that the
mold temperature has the least influence on warpage than the other two parameters. Briefly, melt
temperature and holding pressure are the most effective parameters on the warpage of the part. As is
observed, there is not a linear relationship between the process parameters and the part warpage.
Therefore, using an ANN model could be useful, and it can make a relationship between such nonlinear
problems.

Mold temperature 70 °C

Warpage (mm)
- B

0.8+
0.6
280 -
260 - : 60
240 : ) 70
220 . 80
Melt Temperature (°C) 200 180 90 Holding Pressure (%)

Fig. 4. Comparison of the simulation and predicted results of ANN model based on the various melt
temperatures and holding pressures at constant mold temperature, 70 °C

Holding Pressure 75 %
16

E
E
@ \
& 12
o
4]
= 14

80

: . 2
60 - 260 &0
P _ : 240
- 200 ,, 220
Mold Temperature (°C) 20 180 Melt Temperature (°C)

Fig. 5. Comparison of the Simulation and predicted results of ANN based on the melt temperature
and mold temperature in constant holding pressure, 75 % of IP
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Fig. 6. Comparison of the simulation and predicted results of ANN based on the holding
pressure and mold temperature in constant melt temperature, 230 °C

7. CONCLUSION

Process simulation with different settings including melting temperature, holding pressure and mold
temperature, was carried out and the result of each simulation was recorded. Then the effects of process
parameters on the part warpage were investigated. The results showed that holding pressure and melt
temperature have the most and mold temperature has the least effect on the part warpage. Subsequently, an
ANN model was created based on results of the first group of process simulation. Performance of the
created ANN model was satisfactory. Results of the second group of simulation were used for testing the
ANN model, whose performance was also satisfactory. The results of validation and comparative study
indicate that the ANN model-based estimation technique for part warpage is more suitable. This study
confirms the ability of the ANN model to predict the part warpage.
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