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Abstract– This article describes an investigation into the free vibration of double-walled carbon 
nanotubes (DWCNTs) using a nonlocal elastic shell model. Eringen’s nonlocal elasticity is 
implemented to incorporate the scale effect into the Donnell shell model. Also, the van der Waals 
interaction between the inner and outer nanotubes is taken into account. A new numerical solution 
method from incorporating the radial point interpolation approximation within the framework of 
the generalized differential quadrature (GDQ) method is developed to solve the problem. 
DWCNTs with arbitrary layerwise boundary conditions are considered in this paper. It is shown 
that applying the local Donnell shell model leads to overestimated results and one must recourse to 
the nonlocal version to reduce the relative error. Also, this work reveals that in contrast to the 
beam model, the present nonlocal elastic shell model is capable of predicting some new non-
coaxial inter-tube resonances in studying the vibrational response of DWCNTs.           

 
Keywords– Double-walled carbon nanotube, radial point interpolation method, differential quadrature method, layerwise 
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1. INTRODUCTION 
 

Ever since carbon nanotubes (CNTs) were discovered by Iijima at the NEC laboratory in Tsukuba, Japan 
[1], extensive theoretical and experimental studies have been conducted on these novel materials [2]. 
DWCNTs as the special cases of multi-walled CNTs can be made in quantitative amounts from the chains 
of fullerenes generated inside single-walled CNTs [3]. In recent years, DWCNTs have drawn a great deal 
of attention from the scientific community due to their amazing mechanical, optical and chemical 
properties. 

It is generally accepted that atomistic modeling of nanostructures is very time consuming. 
Accordingly, it is advantageous to develop continuum models for the analysis of nanostructures due to 
their computational efficiency. Since the conventional continuum mechanics is scale free, great attempts 
have recently been devoted to the enhancement of classical continuum models in order to better 
accommodate the results from molecular dynamics (MD) simulations. In the most commonly used size-
dependant continuum theory, nonlocal continuum theory, developed by Eringen [4, 5], the scale effect is 
simply introduced into the constitutive equations as a material parameter.  

Recently, the vibration analysis of CNTs has been the subject of numerous studies based on both 
local and nonlocal models using beam and shell theories [6-17]. For example, Ansari et al. [9] studied the 
free vibration of DWCNTs based on the nonlocal Donnell shell model using an analytical solution 
method. They also employed the MD simulations in order to calibrate the nonlocal parameter used in their 
nonlocal model. 
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For a DWCNT, different combinations of layerwise boundary conditions can be considered. In this 
respect, Xu et al. [7] stated that: “The relevance of the existing model in which both tubes have the same 
boundary conditions for the vibration of double-walled CNTs is questionable”. Therefore, developing 
powerful numerical solution methods capable of treating layerwise boundary conditions in a DWCNT can 
play an important role in the advancement of computational nanomechanics. Hence, the main aim of the 
current work is to extend the study reported in [9] on DWCNTs with the same boundary conditions for the 
inner and outer tubes to DWCNTs with layerwise boundary conditions. To this end, a novel numerical 
method termed as RPIDQ is developed within the framework of hybrid radial point interpolation [18] and 
differential quadrature method [19]. The effectiveness of the present model is assessed by MD simulation 
as a benchmark of good accuracy. In addition, this study provides a comparison between the beam and 
shell models in predicting the frequencies of DWCNTs. To accomplish this goal, an explicit formula is 
also derived for the nonlocal frequencies of DWCNTs based on the beam model. Some new inter-tube 
resonant frequencies and the related non-coaxial vibrational modes are identified in this work as a result of 
incorporating circumferential modes into the shell model.  
 

2. MODELING 
 
In the theory of nonlocal elasticity, unlike the conventional continuum mechanics, the stress at a point is 
considered to be a functional of the strain field at all points in the body. To bring the nonlocality into 
formulation, the Eringen nonlocal constitutive equation is employed as [5]  
   

                                                        ሺ1 െ ሺ݁ܽሻଶߘଶሻߪ ൌ ݐ  (1)

here ݁ܽ stands for the nonlocal parameter which leads to consideration of  the scale effect and ߘଶ is the 
Laplacian operator; ࢚ is the macroscopic stress tensor at a point. The stress tensor is related to strain by 
generalized Hooke’s law as 

ݐ                                                         ൌ ܵ: ߳ (2)

where ࡿ is the fourth order elasticity tensor and ‘:’ denotes the double dot product. Hooke’s law for the 
stress and strain relation is given by 
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where ܧ,  .are Young’s modulus, shear modulus and Poisson’s ratio of the material, respectively ߥ and ܩ
Consider an elastic cylindrical shell with radius ܴ, length ܮ and thickness ݄ for each tube of a DWCNT 
(see Fig. 1). There are different theories for cylindrical shells such as Flugge’s theory [20, 21] or 
Donnell’s theory [22]. In Donnell’s shell theory, the shear and rotary inertia effects are taken into account. 
Thus, it seems to be suitable for the vibration analysis of cylindrical shells. Also, it is frequently used for 
the analysis of CNTs due to the relatively accurate results in spite of its theoretical simplicity. Based on 
the Donnell shell theory, the three-dimensional displacement components ݑ௫, ݑ௬ and ݑ௭ in the ߠ ,ݔ and ݖ 
directions respectively, as shown in Fig. 1, are assumed to be 

,ݔ௫ሺݑ                                          ,ߠ ,ݖ ሻݐ ൌ ,ݔሺݑ ,ߠ ሻݐ  ,ݔ௫ሺ߰ݖ ,ߠ ሻ (4a)ݐ

,ݔ௬ሺݑ                                                          ,ߠ ,ݖ ሻݐ ൌ ,ݔሺݒ ,ߠ ሻݐ  ,ݔఏሺ߰ݖ ,ߠ ሻ (4b)ݐ
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                                                                   			 ,ݔ௭ሺݑ ,ߠ ,ݖ ሻݐ ൌ ,ݔሺݓ ,ߠ ,ݖ ሻ (4c)ݐ

where ݑ, ,ݒ  are mid-surface displacements and ߰௫,߰ఏ are mid-surface rotations. The mid-surface strains ݓ
and curvature changes are given by 
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The strains at any point in the shell thickness can then be written in terms of mid-surface strains and 
curvature changes as 
௫ߝ                                                                             ൌ ௫ߝ  ௫݇ݖ     (6a)
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Using Eqs. (3) to (6) the stress and moment resultants can be given as follows  
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where ܦ	 is the bending rigidity. The governing equations are 
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For any tube of a DWCNT, different boundary conditions may be considered by the combination of 
simply-supported (S), clamped (C) and free (F) edges. For example: 
Simply-supported-Simply-supported (SS) 
 

ݒ ൌ ݓ ൌ ߰ఏ ൌ ௫ܯ ൌ ௫ܰ ൌ 0,															 ݐܽ ݏ݁݃݀݁ ݔ ൌ 0 , ݔ ൌ (10) ܮ

Clamped-Clamped (CC) 

ݑ ൌ ݒ ൌ ݓ ൌ ߰௫ ൌ ߰ఏ ൌ 0,									 ݐܽ ݏ݁݃݀݁ ݔ ൌ 0 , ݔ ൌ (11) ܮ

Clamped-Free (CF) 

ݑ                ൌ ݒ ൌ ݓ ൌ ߰௫ ൌ ߰ఏ ൌ 0,											 ݐܽ ݁݀݃݁ ݔ ൌ 0  

               ௫ܰ ൌ ௫ܰఏ ൌ ௫ܯ ൌ ௫ఏܯ ൌ ܳ௫ ൌ 0, ݐܽ ݁݀݃݁ ݔ ൌ (12) ܮ

 
3. SOLUTION 

a) Radial point interpolation method 
 
In the radial point interpolation method (RPIM), the trial function is given by [18] 

,ݔ൫ݑ ொ൯ݔ ൌܴ௦ሺݔሻ


௦ୀଵ

ܽ௦൫ݔொ൯ 
(13a)

ܽ௦்ሺݔொሻ ൌ ሾܽଵ, ܽଶ,⋯ , ܽሿ (13b)

ܴ௦்ሺݔሻ ൌ ሾܴଵሺݔሻ, ܴଶሺݔሻ, … , ܴሺݔሻሿ (13c)

where ݊ is the number of nodes in the neighborhood of a given point ݔொ, ܴ௦ሺݔሻ are radial basis functions in 
the space coordinates ்ݔ and ܽ௦൫ݔொ൯ is the coefficient corresponding to the given point ݔொ. The vector of 
coefficients ܽ can be determined by enforcing Eq. (13) to pass through all the ݊ nodes within the support 
domain of point ݔொ   

௦ݑ ൌ ܴ௦்ሺݔሻܽ ሺݏ ൌ 1,2, … , ݊ሻ (14)

or in matrix form 

௦ܷ ൌ ܴ௦ܽ  (15)

in which ௦ܷ
் ൌ ሾݑଵ, ,ଶݑ … , 	ሿ and ܴ௦ݑ  is called the moment matrix given by 

ܴ௦	

ൌ ൦

ܴଵሺݔଵሻ ܴଶሺݔଵሻ ⋯ ܴሺݔଵሻ
ܴଵሺݔଶሻ ܴଶሺݔଶሻ ⋯ ܴሺݔଶሻ

⋮ ⋮ ⋱ ⋮
ܴଵሺݔሻ ܴଶሺݔሻ ⋯ ܴሺݔሻ

൪

 

(16)

From Eq. (15), one can have  

                                         ܽ ൌ ܴ௦ିଵ ௦ܷ (17)

Substituting Eq. (17) into Eq. (13) gives 
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ሻݔሺݑ                                                              ൌ ∑ ߶௦ሺݔሻ
௦ୀଵ ௦ (18)ݑ

in which 

                                                                ߶௦ሺݔሻ ൌ ܴ௦்ሺݔሻܴ௦ିଵ (19)

The ݈th derivative of the RPIM shape functions is readily obtained by 

                           ߶௦
ሺሻሺݔሻ ൌ ቂܴ௦்

ሺሻሺݔሻቃ
்
ܴ௦ିଵ   

(20)

b) RPIDQ analog of field equations 

The modal displacement functions for the ݅th tube are taken as 

,ݔሺሻሺݑ       ሻߠ ൌ ܷሺሻሺݔሻ cosሺ݉ߠሻ ݁ఠ௧ (21a)

,ݔሺሻሺݒ       ሻߠ ൌ ܸሺሻሺݔሻ sinሺ݉ߠሻ ݁ఠ௧ (21b)

,ݔሺሻሺݓ       ሻߠ ൌ ܹሺሻሺݔሻ cosሺ݉ߠሻ ݁ఠ௧ (21c)

      ߰௫
ሺሻሺݔ, ሻߠ ൌ ௫ߖ

ሺሻሺݔሻ cosሺ݉ߠሻ ݁ఠ௧ (21d)

      ߰ఏ
ሺሻሺݔ, ሻߠ ൌ ఏߖ

ሺሻሺݔሻ sinሺ݉ߠሻ ݁ఠ௧ (21e)

Substituting these modal functions into the field equations of the DWCNT and discretizing them at 
the ݎth given point using the RPIDQ approximation give  
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where the algebraic operators are given in Appendix A. 

c) RPIDQ analog of boundary conditions 

By the RPIDQ approximation, the discrete counterparts of the equations governed by the boundary 

conditions become 
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Clamped-Free (CF) 
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d) Derivation of eigenvalue problem 

Rearranging the quadrature analogs of field equations and the boundary conditions within the 

framework of a generalized eigenvalue problem leads to 
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 (26)

where the subscripts ܾ and ݀ refer to the boundary and domain grid points, respectively. The displacement 

vectors ሼୢߜሽ and ሼߜୠሽ are defined by 
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, ሺ݅ ൌ 1,2ሻ (27)

and 
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Using the condensation technique [23], Eq. (26) can be transformed into the standard form of  

ௗௗܭଵሺି݃ܭ െ ܭௗܭ
ିଵܭௗሻߜௗ െ ߱ଶߜௗ ൌ 0 (29)

from which the eigenvalues (߱) can be extracted. The smallest value of ߱  is the fundamental frequency. 
 

4. RESULTS AND DISCUSSION 
 
The constant values needed for numerical evaluations are E ൌ 1	TPa, ݄ ൌ ߩ , ݉݊	0.34 ൌ 2.3 g cmଷ⁄ and 
ߥ ൌ 0.3. The configuration of layerwise boundary conditions, for example, will be indicated by (SS/CC), 
where the pair of SS corresponds to the inner tube and the pair of CC corresponds to the outer tube. Also, 
for a given inter-tube mode number , for convenience, the frequency associated with the ݊th axial and 
݉th circumferential modes will be denoted by ߱

ሺ݉ሻ.  For all the calculations performed in this work, the 
following radial basis function which is one of the commonest forms with adjustable parameters is 
employed [18] 
 

                                                       								ܴሺݔሻ ൌ exp െߙ ቀ
௫ି௫
ௗ
ቁ
ଶ
൨ , ߙ ൌ ܿ݀ 

(30)

To define the support domain at a given point, the dimension of the support domain ݀௦ can be 
determined by ݀௦ ൌ  ௦ is the dimensionless size of the support domain and ݀ is aߙ ௦݀, whereߙ
characteristic length that relates to the nodal spacing near the point at ݔ. For uniformly distributed nodes, 
݀ is the distance between two neighboring nodes. For non-uniformly distributed nodes, alternatively, ݀ 
can be characterized as an “average” nodal spacing in the support domain of ݔ. The physical meaning of 
the dimensionless size of the support domain αୱ is the factor of the average nodal spacing. In one-
dimensional cases, an average value of ݀ can be computed by ݀ ൌ ௦ܦ ሺ݊ೞ െ 1⁄ ሻ, in which ܦ௦ is an 
estimated support domain, ݀௦, at the point ݔ.  It is worth mentioning that ܦ௦ should be a reasonably good 
estimate of ݀௦ and ݊ೞ is the number of nodes that are covered by a known domain with the dimension of 
݊ ௦. The first three resonant frequencies of a SS/SS DWCNT for up toܦ ൌ 19 regular and irregular grid 
sampling points are listed in Table 1. This table indicates quite obviously the converging trend of the 
present numerical solution with increasing number of sampling points for both given radii of support 
domain.  

 
Table 1. Convergence of resonant frequencies (THz) of a SS/SS DWCNT  

(ܴଵ ൌ 8.5	݊݉, ܮ ܴଵ⁄ ൌ 5, ߩ ൌ 1.34 g cmଷ⁄ , ݁ܽ ൌ 0) 

 Number of 
nodes 

࣓
ሺሻ ࣓

ሺሻ ࣓
ሺሻ 

 Regular Irregular Regular Irregular Regular Irregular 

࢙ࢻ ൌ  

9 0.1335     0.1338    0.2644     0.2665     0.4096 0.4462 
11 0.1333     0.1334    0.2640     0.2642     0.4017       0.3962 
13 0.1330     0.1331    0.2637     0.2646    0.4002       0.4011      
15 0.1328     0.1330    0.2635     0.2639    0.3998       0.4005      
17 0.1328     0.1328    0.2634     0.2635    0.3997       0.3999      
19 0.1328     0.1328    0.2634     0.2634    0.3997 0.3997 

࢙ࢻ ൌ  

9 0.1334     0.1335    0.2641     0.2652     0.4050 0.4420 
11 0.1332     0.1333    0.2639     0.2640     0.4012       0.4026 
13 0.1329     0.1330    0.2636     0.2638    0.3999       0.4009      
15 0.1328     0.1329    0.2634     0.2637    0.3997       0.4001      
17 0.1328     0.1328    0.2634     0.2634    0.3997       0.3998      
19 0.1328     0.1328    0.2634     0.2634    0.3997 0.3997 
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APPENDIX B: EXACT SOLUTION FOR THE NONLOCAL BEAM MODEL 

ݓ                                      ൌ ࣱ sin ቀ
గ௫


ቁ ݁ఠ௧ , ሺ݅ ൌ 1,2ሻ (B.1)

ଵܫܧ
߲ସݓଵ
ସݔ߲

 ଵሾ1ܣߩ െ ሺ݁ܽሻଶଶሿ
߲ଶݓଵ
ଶݐ߲

െ ܿଵଶሾ1 െ ሺ݁ܽሻଶଶሿሺݓଵ െ ଶሻݓ ൌ 0 
 

ଶܫܧ                  
డర௪మ
డ௫ర

 ଶሾ1ܣߩ െ ሺ݁ܽሻଶଶሿ
డమ௪మ
డ௧మ

െ ܿଶଵሾ1 െ ሺ݁ܽሻଶଶሿሺݓଶ െ ଵሻݓ ൌ 0 (B.2)

Substituting Eq. (B.1) into Eq. (B.2) gives the following algebraic equations 
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The nontrivial solution of (B.4) gives ݀݁ݐሺܭ െ ߱ଶܯሻ ൌ 0. The following explicit formula for the resonant 
frequencies of the DWCNT can be obtained as 
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