
IJST (2013) A1: 83-92 
Iranian Journal of Science & Technology 

http://www.shirazu.ac.ir/en 

 
Analytical approximate solutions of fractionel convection-diffusion 

equation with modified Riemann-Liouville derivative by  
means of fractional variational iteration method 

 
M. Merdan 

 
Department of Mathematical Engineering, Faculty of Engineering, 

Gumushane University 29100, Gumushane, Turkey 
E-mail: mmerdan@gumushane.edu.tr 

 

Abstract 

In this article, an analytical approximate solution of nonlinear fractional convection-diffusion with modified 
Riemann-Liouville derivative was obtained with the help of fractional variational iteration method (FVIM). A new 
application of fractional variational iteration method (FVIM) was extended to derive analytical solutions in the 
form of a series for this equation. It is indicated that the solutions obtained by the FVIM are reliable and an 
effective method for strongly nonlinear partial equations with modified Riemann-Liouville derivative. 
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1. Introduction 

In recent years, considerable interest in fractional 
calculus used in many fields such as 
electromagnetics, acoustics, viscoelasticity, 
electrochemistry, cosmology, viscoelasticity, 
diffusion, edge detection, turbulence, signal 
processing material science, physics and 
engineering are have been successfully modelled by 
linear or nonlinear fractional order differential 
equations [1-8]. Das at al. have obtained an 
approximate analytical solution of the fractional 
diffusion equation with absorbent term and external 
force [9], Fractional convection-diffusion equation 
with nonlinear source term by Momani and 
Yildirim [10], space-time fractional advection-
dispersion equation by Yildirim and Kocak [11], 
fractional Zakharov-Kuznetsov equations by 
Yildirim and Gulkanat [12], integro-differential 
equation by El-Shahed [13], non-Newtonian flow 
by Siddiqui et al. [14], fractional PDEs in fluid 
mechanics by Yildirim [15], reaction-diffusion 
Brusselator system with fractional time derivative 
[16]. 

The homotopy perturbation method (HPM) [9-
23], the Adomian decomposition method [23-30], 
homotopy analysis method (HAM) [31] and the 
variational iteration method (VIM), proposed by Ji-
Huan He [32-44], was successfully applied to 
autonomous ordinary and partial differential 
equations and other fields. Ji-Huan He [37] was the 
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first to apply the variational iteration method to 
fractional differential equations and a new modified 
Riemann-Liouville left derivative is suggested by 
Jumarie [45-49] and also Momani [30] used the 
Adomian decomposition method and HPM [10] for 
solving the nonlinear fractional convection-
diffusion equation. Recently, Wu [50] researched 
local behaviors of the fractal dynamics using the 
local fractional derivative. Using of the fractional 
variational iteration method was given numerical 
simulations of differential equations and fractional 
differential equations [51]. In [52, 53], fractional 
nonlinear differential equations can be solved by 
the fractional variational iteration method. More 
recently, Merdan et al. [54] and [55], have studied 
the differential transform method for the 
approximate solutions of the Fornberg-Whitham 
equation and also Merdan [56], [57] and [58] have 
used the fractional variational iteration method for 
solving numerically the time fractional reaction-
diffusion equation and Swift-Hohenberg (S–H) 
equation with modified Riemann-Liouville derivative. 

In this paper, we extend the application of the 
VIM in order to derive analytical approximate 
solutions to nonlinear fractional convection-
diffusion problem 
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where  u  is some reasonable nonlinear function 

of u  which is chosen as a potential energy, c is a 
constant,  is a parameter describing the order of 
the time-fractional derivative. The fractional 
derivative is considered in the modified Riemann-
Liouville derivative.  ,u x t  is assumed to be a 

causal function of time, i.e., vanishing for 0t  . 
The convection–diffusion equations are widely 
used in science and engineering as mathematical 
models for computational simulations, such as in oil 
reservoir simulations, transport of mass and energy, 
and global weather production, in which an initially 
discontinuous profile is propagated by diffusion and 
convection, the latter with a speed of c . 

The goal of this paper is to extend the application 
of the variational iteration method to solve 
fractional nonlinear convection-diffusion equations 
with modified Riemann-Liouville derivative. 

This paper is organized as follows: 
In section 2, we are given brief definitions related 
to the fractional calculus theory. In section 3, we 
define the solution procedure of the fractional 
variational iteration method to show efficiency of 
this method, we present the application of the 
FVIM for the fractional nonlinear convection-
diffusion equations with modified Riemann-
Liouville derivative and numerical results in 
Section 4. The conclusions are then given in the 
final section 5. 

2. Basic definitions 

Here, some basic definitions and properties of the 
fractional calculus theory which can be found in [1-
8, 45-49] are given. 
 
Definition 1. Let the special operator D  that we 
choose to use, which requires the dependent 
variable f  to be continuous and    -times 

differentiable in the independent variable x , is 
defined by 
 

( ) ( ), ,D f x D I f x N                                  (3) 
 
which is called the Riemann-Lioville fractional 
derivative of order  . 
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Definition 2. The left-sided Riemann-Liouville 
fractional integral operator of order 0,   of a 
function , 1f C     is defined as 
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The properties of the operator J   can be found in 

[1, 2]. 
 
Definition 3. The modified Riemann-Liouville 
derivative[47-48] is defined as 
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where  0,1 , 1   and 1.x m m m      

Definition 4. Fractional derivative of compounded 
functions [47-48] is defined as 
 

 1 , 0 1d f df                                       (6) 
 
Definition 5. The integral with respect to  dx


 

[47-48] is defined as the solution of the fractional 
differential equation 
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Lemma 1. Let  f x  denote a continuous function 

[47-48] then the solution of the Eq. (7) is defined as 
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For example, if  f x x  in Eq. (8) one obtains 
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Definition 6. Assume that the continuous function 

: , ( )f R R x f x   has a fractional derivative of 

order k , for any positive integer k  and any  , 
0 1  ; then the following equality holds, which 
is 
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On making the substitution h x  and 0x   

we obtain the fractional Mc-Laurin series 
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3. Fractional variational iteration method 

To describe the solution procedure of the fractional 
variational iteration method, we consider the 
following fractional differential equation [50-58]: 
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According to the VIM, we can build a correct 
functional for Eq. (12) as follows 
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Using Eq. (5), we obtain a new correction functional 
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It is obvious that the sequential approximations 
, 0ku k   can be established by determining  , a 

general Lagrange’s multiplier which can be 
identified optimally with the variational theory. The 
function nu  is a restricted variation which means 

0nu  . Therefore, we first designate the 

Lagrange multiplier   that will be identified 
optimally via integration by parts. The successive 
approximations  1 , , 0nu x t n   of the solution 

 ,u x t  will be readily obtained upon using the 

obtained Lagrange multiplier and by using any 
selective function 0u . The initial values are usually 

used for choosing the zeroth approximation 0u . 

With   determined, then several approximations 

, 0ku k   follows immediately [51, 52, 58]. 

Consequently, the exact solution may be procured 
by using 
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4. Applications 

In this section, we present the solution of nonlinear 
fractional partial differential equations as the 
applicability of FVIM. 
 
Examples 4.1. Consider the nonlinear fractional 
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with initial conditions 
 
   , 0 , 10,30 .xu x e                                           (17) 

 
Construct the following functional: 
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We have 
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The generalized Lagrange multiplier can be 
identified by the above equations, 
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Substituting Eq. (21) into Eq. (18) produces the 

iteration formulation as follows 
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Taking the initial value    0 0, , 0 ,xu x t u x e   we can derive  
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Then, the approximate solutions in a series form are 
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which has the exact solution 
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which is an exact solution to the nonlinear 
convection-diffusion equation. 

Figure 1 is plotted for approximate solution of 
generalized time-fractional convection-diffusion 
equation found in Example 4.1.  
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Figure 2 is for approximate solution of Eq. (16) 
for 0.9,0.8,0.7,0.6.   

Figures 3 and 4 are prepared to show the 

influence of a on the function ( , ).u x t  Figures 3 and 
4 indicate that a decrease in the fractional order   

by selecting the fixed 0.5x   corresponds to an 
increase in the function. From Figs. 3 and 4 five 
sequential values of 1,0.9,0.8,0.7,0.6   are seen. 

 

 
 

 

 
 

 
 
Fig. 1. The surface indicates the solution  ,u x t  for Eq. 

(16) when 1  . (a) Exact solution (b)  2 ,u x t -

approximate solution, (c)  3 ,u x t -approximate solution 

and (d)  4 ,u x t -approximate solution 

 

 

 
 

 

  
Fig. 2. The surface indicates the solution  ,u x t  for Eq. 

(16) (a) approximate solution  3 ,u x t  for 0.9   (b) 

approximate solution  3 ,u x t  for 0.8   (c) 

approximate solution  3 ,u x t  for 0.7   and (d) 

approximate solution  3 ,u x t  for 0.6   
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Fig. 3. Approx. solution  3 ,u x t  for 0.5x   
 

 
 

Fig. 4. Approx. solution  4 ,u x t  for 0.5x   
 

Eq. (16) is solved in [30] using the Adomian 
decomposition method and HPM [10]. FVIM 

solutions indicate that the present algorithm 
performs with considerable efficiency, simplicity 
and reliability. The results obtained from FVIM are 
fully compatible with the Adomian decomposition 
method and HPM. 
 
Examples 4.2. We next consider the non-
homogenous nonlinear fractional convection-
diffusion equation where 
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similarly, we can get the coefficients of nu  to 

zero: 
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
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
.                    (31) 

 
The generalized Lagrange multiplier can be 

identified by the above equations, 
 

 , 1.x t                                                          (32) 
 

Substituting Eq. (32) into Eq. (29) produces the 
iteration formulation as follows 
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Taking the initial value     2

0 0, ,0 ,u x t u x x   we can derive  
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For the special case 1   is [58]  
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n
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    (36) 

 
Canceling the noise terms and keeping the non-

noise terms yields the exact solution of Eq. (27) 
given by 
 

2( , ) 2u x t x t                                               (37) 
 
which is easily confirmed. This is formally proved 
right in [19]. 

Finally, the solution surfaces of the non-
homogenous nonlinear fractional convection-
diffusion equation are depicted in Fig. 5 for 
different values of  . Figures 5 and 6 are prepared 
to show the influence of   on the function ( , )u x t . 

It is clearly seen that a ( , )u x t  increase with the 

increases in t for 1, 0.9, 0.8, 0.7, 0.6  .  

Eq. (27) is solved in [30] using the Adomian 
decomposition method and HPM[10]and the results 
in Fig. 5 compare well with those obtained from the 
Adomian decomposition method and HPM. 
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Fig. 5. The surface indicates the solution  ,u x t  for Eq. 

(27). (a) approximate solution  2 ,u x t  for 0.9   (b) 

approximate solution  2 ,u x t  for 0.8   (c) 

approximate solution  2 ,u x t  for 0.7   and (d) 

approximate solution  2 ,u x t  for 0.6   

 
 

Fig. 6. Approx. solution  2 ,u x t  for 0.5x   

5. Conclusions 

Variational iteration method is known as very 
powerful and an effective method for solving 
nonlinear problems and ordinary, partial, fractional, 
integral equations. In this paper, we have discussed 
modified variational iteration method having 

integral w. r. t.  d
 used for the first time by 

Jumarie. The obtained results indicate that this 
method is powerful and meaningful for solving the 

nonlinear fractional differential equations. Two 
examples indicate that the results of variational 

iteration method having integral w. r. t.  d
 are in 

excellent agreement with those obtained by 
classical HPM [10] and Adomian decomposition 
method [30] which is available in the literature. 
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