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Abstract

A computational method for numerical solution of a nonlinear Volterra and Fredholm integro-differential
equations of fractional order based on Chebyshev cardinal functions is introduced. The Chebyshev cardinal
operational matrix of fractional derivative is derived and used to transform the main equation to a system of
algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.
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1. Introduction

In recent decades, fractional differential equations
have gained much attention due to exact description
of nonlinear phenomena physical phenomena such
as damping laws, electromagnetic, acoustics,
viscoelasticity, electroanalytical chemistry neuron
modeling, diffusion processing and material
sciences [1-2].

In recent years, some attempts have been made to
find analytical and numerical solutions for the
fractional problems.

These attempts have included finite difference
methods [3-5], collocation- shooting methods [6-8],
spline and B-spline collocation method [9-10],
Adomian  decomposition  methods  [11-12],
variational iteration method [13-14], operational
matrix methods [15-17] and etc.

In recent years, fractional integro-differential
equations have been investigated by many authors
[16-22]. Most of the them have utilized linear
problems and a small number of their works have
considered nonlinear problems.

In this work, we introduce a new operational
method to solve nonlinear Volterra and Fredholm
integro-differential equations of fractional order.
The main characteristic behind the approach using
this technique is that it reduces these problems to
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those of solving a system of algebraic equations,
thus greatly simplifying the problem. The
Chebyshev cardinal function is used for numerical
solution of differential equations, with the goal of
obtaining efficient computational solutions. Several
papers have appeared in the literature concerned
with the application of Chebyshev cardinal
functions [23-26].

In this paper, we intend to extend the application
of Chebyshev cardinal functions to solve fractional
nonlinear Volterra and Fredholm integro-
differential equations. Our main aim is to generalize
Chebyshev cardinal operational matrix to fractional
calculus. It is worthy to mention here that, the
method based on using the operational matrix of an
interpolate  function for solving differential
equations is computer oriented.

The rest of the paper is organized as follows:
Basic concepts of fractional differential problems
are discussed in section 2. Section 3 is devoted to
the analysis of the methods and the construction of
operational matrix for fractional derivative.
Application of the proposed method for fractional
problems is given in section 4. The numerical
results for effective confirmation of the proposed
methods are given in section 5.
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2. Concepts of fractional problems

Some basic definitions and properties of the
fractional calculus theory used further in this paper
are given.

Definition 2.1. A real function f(x),x > 0, is said
to be in the space C,, u € R, if there exists a real
number p > p such that f(x) = xPf;(x), where
f1(x) € C[0,1). Clearly C, < Cp if B < p.

Definition 2.2. A function f(x), x > 0 is said to
be in the space C*, m € N U {0}, if f™ € C,.

Definition 2.3. The left sided Riemann - Liouville
fractional integral operator of order ¢ = 0 of a
function f € C,, u = -1, is defined in [27] as
follows:
1 f@®

(a) —
J'Pf () = r@), G- e dt,

a>0, x>0,

JOF) = (0. ()

Definition 2.4. Let f € (™, me NuU{0}. The
Caputo fractional derivative of f(x) is defined as in
[27]:

Jm-A M (x), m—1<a<mmeN,
D@Of(x) = D™f(x) (2)

PR a=m.

It can be shown that [27-29]:

1. J@OJOf = j@f qgv >0, fEeCy
u>0.
I'(y +1)
Fa+y+1)
y > -1, x> 0.
m-—1
3JOD@F() = f) = ) FE09)
k=0
x>0 m—1l<assm.
4. D@OJ@F(x) = f(x), x>0,
m—-—1<as<m,
5. D@C =0, C is constant
6. DWxB =0, BEN, PB<]lal
No ={0,1,..}
7 p@yh - _LBFD
r—a+1)

BEN, B> [al (3)

The Caputo fractional derivative is considered
here because it allows traditional initial and
boundary conditions to be included in the
formulation of the problem.

2. ]@xY = x*tY, a >0,

Xk
kY

xP-a

)

3. Analysis of the methods

In this section, we describe a brief review of the
Chebyshev cardinal functions for solving fractional
differential equations.

Chebyshev cardinal functions of order N in
[—1,1] are defined as [30]:

_ Ty+1(x)
PO = )G -5)
j=12,...,N+1, 4)

where Ty,q(x) is the first kind of Chebyshev
function of order N + 1 in [—1,1] defined by

Ty (%) = cos((N + 1)arccos(x)), (5)

and x;, j=1, 2, .., N+1, are the zeros of
Ty4+1(x) defined by cos((2j —1)/(2N + 2)), j =
1, 2, .. , N+1. We apply t=(x+1)L/2 to
use these functions on [0,L]. Now any function
f(t) on [0, L] can be approximated as

f®) =E32 ft)e;(8) = FTay(), (6)

where t,j=12, .., N+1, are the shifted

points of x;, j =1, 2, .., N + 1, by transforming

¢ = Gt (here we choose t; so that, t; <t, <
© <tyye)s andF = [f(ty), f(E2), o) f ()]

Dy (t) = [91(8), P2 (), ..., Py (D] (M

Note that the functions ¢;(t) are satisfied in the
relation

1, j=1i
#i(t) =6, = {0’ j#i,
i=1,...,N+1.
So we have
(DN(ti) =€, i = 1, ,N +1 (8)

where e; is the ith column of unit matrix of order
N+ 1.

3.1. The operational matrix of derivative

The differentiation of vector @, in (7) can be
expressed as

@'y =Dy, ©)

whereD is (N + 1) X (N + 1)operational matrix of
derivative for Chebyshev cardinal functions.
It is shown [24] that the matrix D is the form

o () - P (Ene)
p=| :+ - I (10)

B (t) b ()
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where
N+1 1
¢ (1) = z o TN
i=1
i#j
N+1
¢t =[] 1,
TN+1(t]) =1
Lk,
k=1, N+1, j#k (11

andﬂ — 22N+1/LN+1.

3.2. The operational matrix of fractional derivative

The fractional differentiation of vector @y (t) in
(7) can be expressed as

D@dy = D, Dy, (12)

where D, is (N + 1) X (N + 1)operational matrix
of fractional derivative for Chebyshev cardinal
functions. The matrix D, can be obtained by the
following process. Let

D@y (1) = [p{P(), pSV (@), ..., g O (13)
Note that

Iee® = g x [T (£ 1), (14)
=t k]
Using Egs. (2), (7) and (14) the function ¢{®(t)
can be approximated as

Pi(t) = x

1
Tn4a(t j)

(IR - t))@.  (15)
k#j

Also, we can expand [[§21 (t — t;) as
k#j

1_[ (t—t) =tV — Z ty, [tV71
k=1 k1#j
k#j 1<k <N+1

+ Z ti,ti, |tV 72
kika#j
1<k <ks<N+1
N+1
— (DY 1_[ tre,

k=1
k#j

j=12,..,N+1) (16)

Lemma 3.1. Let ¢,(x) be a Chebyshev cardinal
function such that n < a then D¢, (x) = 0.

Proof: Using Egs. (3) in Eq. (16) the lemma can be
proved.
For 0 < a < 1 using (16), we get

N+1
1
¢J§a)(t) =p X m(l_[ (t = t)@
=1

k#j
_ p
Ty (I(V +1—a)
x [N V=% — (N — a)(N
SDIC ) e

k1#j
15k SN+1

+(N—a)(N—oa—1)(N

= 2)!( Z tiey tic, JEV TS —

kiko#j
1<k <kp,<N+1

N-2
+DY Pl n-a-1

1-—
x ( Z ey by - gy )t %]
kqkz,. k(N-1)%]
1k <kp<-<k(y_1)SN+1

j=12.,N+1 (17)

Any function qb](a)(t), using (6) can be
approximated as

Bi0 () = TN ¢ ()i (). (18)
Comparing (12) and (18), we get

S CYREE S YY)
D,= : : , 19)
HICYREE GG
where the entries of matrix D , can be found using
Eq. (17).

For example for N = 2 and L = 1, we have
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32[21 637 — (ty + t5)t17Y] 32[21t27% — (t, + t3)t3™ %] 32[21t57% — (t, + t3)t37Y]
I3 —a)T'3(t1) F'@—a)T'5(ty) I3 —a)T'5(t1)
32[21 637 — (b + t3)t17%] 32[21t27% — (t; + t3)t3™%] 32[2!1t57% — (t, + t3)t37Y]
D, = I3 —a)T'3(tz) I3 —a)T'3(ty) I3 —a)T'3(ty) ’
32[21 637 — (b, + t)t17%] 32[21t27% — (t; + t)t37%] 32[2!1t37% — (t; + t,)t3 %]
I3 —a)T'3(ts) I3 —a)T'3(ts) I3 —a)T'3(ts)
and so for a = %, we have
1.967 0.212 —-0.372 + Z - th-1 o
D.= —-1.418 1.418 1.418 (20) N kitka | N —1
1= . K%
2 —-0.549 -1.630 -—1.046 1sk11<k2255V+1
N+1
_1\N
Remark 32.[fa =n, n€N, then D, =D". +(-D 1_[ tet],
k=1
k#j
3.3. The operational matrix of integral ]
j=12,..,N+1. (25)

The integral and fractional integral of vector @y
in (7) can be expressed as

Jy @y =1y, 1)

where Iy and (N +1) X (N + 1) operational
matrix of integral for Chebyshev cardinal functions.
The matrix I can be obtained by the following
process. Let

Jy ox(®dt = [f; ¢:(D)dt,
oo fy Buaa(®)dt]. (22)

Using Eq. (16), any function 1;(x) = [; ¢;(t)dt
can be approximated as

Y () = TR ¥t i (x). (23)
Comparing Egs. (21) and (23), we get
[ P1(t1) P1(tyn+1) l
Iy = : : , (24)
Yn+1(t1) Yn+1(En+1)

where the entries of the matrices I can be found
using Eq. (16) as follows

v© = [ #0d=

B eV tN
T vi1(t) a1 ¢ Z be) g
N+1\%j I7E3]
1<k{<N+1

+( Z tiy ti,)
kiko#j
1<k, <ky<N+1

tN—l

N-1

4. Application of the operational matrix of
fractional derivative

In this section, we apply the operational matrix of
fractional derivative to solve nonlinear Volterra and
Fredholm integro-differential  equations  of
fractional order.

4.1.  Nonlinear  Volterra  integro-differential
equation of fractional order

Consider the nonlinear Volterra integro-
differential equations of the second kind of
fractional order [15]

D@y(x) — A f; K(x,)F(y(s))ds = g(x),0<x <1, (26)
with supplementary conditions
y®0)=d;, i=0..n, n<][al, (27)

where g € L?([0,1)), K € L?([0,1)?) are known
functions, y(x) is unknown function, D(® is the
Caputo fractional differentiation operator of order a
and F(y(s)) is a polynomial of y(x) with constant
coefficients. Moreover, these equations are
encountered in combined conduction, convection
and radiation problems [27,31,32]. Local and global
existence and uniqueness solution of the integro-
differential equation given by (26)-(27) is given in
[33].

To solve problem (26)-(27), we approximate
y(x), g(x) and integral formula in (26) by cardinal
Chebyshev functions on [0,1] and define
operational matrices as follows

D@y(x) Dy (x)"D@TC = CT D Dy (x),
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N+1

9= ) gii(x) = 67Oy (),
l(x s, }L/ES)) = K(x,s)F(y(s))

N+1 N+1

Z (ti, 6 F (7(t7))) 00ty (5)
s = &y(0)" Ldy(s),

f K(x, s)F(y(s))ds~CbN(x)TLf dpy(s)ds

=dy)T LIy®y(x), (28)

where G = [gq, ..., Gn+1]7>
9i=9), i=1.,N+1,

o)

j=1,..,N+1 and C =[cq,..,cy+1]" is an
unknown vector. Employing (28) in (26), we have

Ryt1(0) = (C"DL = A0y (x) LI, — GMPy(x) =0.  (29)

Collocating Eq.(29) in the points t;, i=n+
2,..,N+1, we get

Ry+1(t) = (CT D — AefLly — G)e; = 0, (30)

where e; is the ith column of unit matrix of order
N + 1. Substituting Egs. (9) and (28) in Eq. (27),
we get

y(0) = CTdy(0) = d,,

y'(0) = C"DDy(0) = dy,

y™(0) = C"D"®y(0) = dy. 31

These equations together with Eq. (30) generate
N + 1 nonlinear equations which can be solved by
several methods such as Newton iterative method.
Consequently y(x) given in Eq. (26) can be
calculated.

4.2.  Nonlinear Fredholm integro-differential
equation of fractional order

Consider the Nonlinear Fredholm integro-
differential equation of fractional order

D@y (x) — Afol K(x, s)F(y(s))ds =g(x), 0<x<1, (32)
with supplementary conditions
yD0)=d; i=0..n, n<][al (33)

where g € L2([0,1)), K € L?([0,1)?) are known
functions, y(x) is unknown function, D(® is the
Caputo fractional differentiation operator of order «
and F(y(s)) is a polynomial of y(x) with constant
coefficients.

To solve problem (32) and (33), we approximate
y(x) and g(x) by cardinal Chebyshev functions on
[0,1] and define operational matrices as follows

D@y (x) XDy (x)"DWTC = oy (x)" DLC,
N+1
g~ Z 919 (x) = GOy (x),
i=1
(x,5,5(s)) = K(x,5)F(y(s)) =

N+1 N+1

ZZ (t“tJ'F Y(tj)))¢i(x)¢,-(s)

i=1 j=
= Oy(x)" L CDN(S):
1

J. K(x, s)F(y(s))ds ~
0

Oy()TL [ @y(s)ds = y(x)" LHON(x),  (34)

where G = [g1, ., gn+1]"> 9 = 9 (&),
i=1,.,N+11;= l<ti, t;,F (CTCD(tj))>,
ij=1.,N+1,
H is(N+ 1) x (N + 1) operational matrix with
fy ¢udt =hyj, ij=1..,N+1 and C=

[c1, . Cy+1]T is an unknown vector. Employing
(34) in (32), we have

Ryi1(x) = (€T D g —Ady(x)"LH -GNy (x) =0. (35)

Collocating Eq. (35) the points t;, i=n+
2,..,N+1, we get

Rys1(t) = (CTDT —AeLH—GT)e; = 0. (36)

These equations together with Eq. (33) generate
N + 1 nonlinear equations which can be solved.
Consequently y(x) given in Eq. (32) can be
calculated.

5. Numerical examples

In this section, we give the computational results of
numerical experiments with methods based on the
preceding sections, to support our theoretical
discussion. The obtained results by the proposed
method compared with the results of [16] in
examples 1, 3 and [17] in examples 2, 4. Note that
the error of [17] and [16] is shown with Ej, where j
is size of operational matrix.

Example 1. Consider the following fractional
nonlinear integro-differential equation [16]

D2y (x) - f xt(y(®)"dt = g(x),
0
0<x<1, (37)

subject to
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y(0) =0,
3/2_
where g(x) = w - ﬁ x with exact

solution y(x) = x? — x.

Figure 1 shows the plot of error with N =
3,5,7,9 using the proposed method. This Fig.
illustrates that by increasing N, the error of results
decrease rapidly. In Table 1 the results of the
method are compared with the results of [16],
which highlights more accuracy of the proposed
method. The size of operational matrix in our
method is N + 1. In Table 1 it is illustrated that the
proposed method gives high accuracy with less
computational cost compared with [16].

[

0z 04 06 08 1

000005
000010
000015

000020

N=7
3w 107394
zx10-%4 |

L=10"%4 |}

Lx10-%4 \JSox |

2.x107%
-3.= 10~
4. 10754

5.: 103+ \

G.x 1077

N=9

Fig. 1. Plot of error for y(x) with N =3,5,7,9 for
example 1

Example 2. Consider the following equation:

D% (x) + fox (y(t))zdt = sinh(x) +
%cosh(x)sinh(x) — E,

0<x<1, 1<a<?2,

y© =0, y(0)=1 (38)

The exact solution of this problem when @ = 2 is
y(x) = sinh(x). Figure 2 shows the results for
N =3 and various 1 < ¢ < 2. The comparisions
show that as & — 2, the approximate solutions tend
to exact solution. The error in the case a = 2, for
different values of N, is shown in Table 1 and Fig.
3. These results show good agreement with the
results of references [16, 17, 34].

wean =127
oooe o= ].f
== =175 o9

0.8 - assn a=2.00 a2
— exact ncl

g
nou
a

-]
\i

T T T
0 0.2 0.4 0.6 0.8 1
x

Fig. 2. Plot of the approximate solution of example 2 for
some a with N = 3
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Fig. 3. Plot of error for y(x) with N =3,5,7,9 for
example 2

Example 3. Consider the following nonlinear
Fredholm integro-differential equation, of order

a=2[16]

Dgy(x) - fol (x+ t)z(y(t))sdt =gx), 0<sx<1, 39)

subject to
y(©0)=0, y'(0)=0

3 2
M—x——f—lwithexact
T 7 4 9

where g(x) = 3
solution y(x) = x2.

Also, the size of operational matrix in our
method, N + 1, is less than the size of operational
matrix in [16], but the accuracy of this approach is
higher than the results in [16].

Figure 4 shows the plot of error with N =
3,5,7,9 using the proposed method. Similarly
example 1, by increasing N, the error of results
decreases in this Fig. The results of the method
compared with the results of [16] in Table 1 that
highlights the proposed method more effectively.

02 a4 Wb ax h
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00008

0 | S T T T 1
0z 04 o k] 1
00000051 |
=0.00001(+
\
-0,0000154 \
- 0.00002(H 9 ¥ 4
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2x10°"
-3.x10°%4
\
4% 107" \
" _.r:
S 107
//
14 10+ Sl
a8 \
¥ Y
12% 10744 / 4"
1Lx 107 M+ Ly
fox 103 AY
\
\
b 107 Mo A
=35 I\.
4% 10 \
w g ¥ Y
\
',
\
N
02 04 0.6 (1% 3 1
x

Fig. 4. Plot of error for y(x) with N =3,5,7,9 for

example 3.

Table 1. Approximate of absolute error for N = 3,5,7,9

Examples  [[Eyllz  |lEsllz  llEsllz [lEwllz  IEs2ll2
(N=3) (N=5) (N=7) (N=9) [16,17]

1 9.8% 7.0% 7.7% 5.8% 7.7%
e—6 e—7 e—8 e—36 e—4

2 1.8%x 1.1x 2.4% 2.6% 1.3x
e—3 e—5 e—8 e—11 e—6

3 6.4% 1.0x 2.9% 6.7 3.5%
e—4 e—5 e—8 e—35 e—3

4 1.3x 1.9% 7.5% 1.2x 1.6x
e—2 e—4 e—7 e—9 e—6

Example 4. In the following, we consider the
fourth order equation:

Dy(x) - f et(y(®)dt = 1,

0
0<x<1, 3<a<4

y(0) =y'(0) =y"(0) = y"'(0) = 1. (40)
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Fig. 5. Plot of The approximate solution of
Example 4 for some a with N = 7.
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Fig. 6. Plot of error for y(x) with N = 3,5,7,9 for
example 4

The exact solution of this problem when @ = 4 is
y(x) = e*. The numerical results for some «a
between 3 and 4 are presented in Table 2. This
Table shows that the obtained results by the
proposed method are similar to Ref. [35, 17]. In
Fig. 5, the comparisons show that as a — 4, the
approximate solutions tend to exact solution. Figure
6 shows the approximate solution and the plot of
error with N =3,5,7,9 when a =4 using
proposed method.

Table 2. Numerical results for example 4 in N = 4
with agreement whth [16, 35]

X, a= a= a= = =
3.25 3.25[1 3.25 3.75[3 3.75[1 a=
[35] 6] 5] 6] 3.75
0 1.0 1.000  1.000 1.0 1.000  1.000
004 000 000 000
0. 1.106 1.105 1.105 1.106 1.105  1.105
1 551 258 166 151 181 176
0. 1223 1221 1221 1223 1221 1221
2 932 892 333 227 452 489
0. 1353 1352 1349 1352 1350 1.350
3200 313 500 308 272 292
0. 1495 1496 1490 1494 1492  1.493
4 601 762 666 636 543 172
0. 1652 1663 1.645 1651 1.652 1651
5 553 409 833 615 178 950
0. 1.825 1843 1.816 1.824 1.826 1.828
6 655 799 000 824 696 683
0. 2016 2044 2002 2016 2.109  2.025
7 687 381 166 024 409 663
0. 2227 2277 2205 2271 2237 2245
8 634 591 333 769 195 416
0. 2460 2526 2426 2460 2472 2.490
9 691 496 500 475 652 704
6. Conclusion

In this paper we presented a numerical approach for
solving the fractional Volterra and Fredholm
integro-differential ~ equations. The  cardinal
Chebyshev functions were employed. The obtained
results showed that this approach can solve the
problem effectively.
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