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Abstract 

A computational method for numerical solution of a nonlinear Volterra and Fredholm integro-differential 
equations of fractional order based on Chebyshev cardinal functions is introduced. The Chebyshev cardinal 
operational matrix of fractional derivative is derived and used to transform the main equation to a system of 
algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique. 
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1. Introduction 

In recent decades, fractional differential equations 
have gained much attention due to exact description 
of nonlinear phenomena physical phenomena such 
as damping laws, electromagnetic, acoustics, 
viscoelasticity, electroanalytical chemistry neuron 
modeling, diffusion processing and material 
sciences [1-2]. 

In recent years, some attempts have been made to 
find analytical and numerical solutions for the 
fractional problems. 

These attempts have included finite difference 
methods [3-5], collocation- shooting methods [6-8], 
spline and B -spline  collocation method [9-10], 
Adomian decomposition methods [11-12], 
variational iteration method [13-14], operational 
matrix methods [15-17] and etc. 

In recent years, fractional integro-differential 
equations have been investigated by many authors 
[16-22]. Most of the them have utilized linear 
problems and a small number of their works have 
considered nonlinear problems. 

In this work, we introduce a new operational 
method to solve nonlinear Volterra and Fredholm 
integro-differential equations of fractional order. 
The main characteristic behind the approach using 
this technique is that it reduces these problems to 
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those of solving a system of algebraic equations, 
thus greatly simplifying the problem. The 
Chebyshev cardinal function is used for numerical 
solution of differential equations, with the goal of 
obtaining efficient computational solutions. Several 
papers have appeared in the literature concerned 
with the application of Chebyshev cardinal 
functions [23-26]. 

In this paper, we intend to extend the application 
of Chebyshev cardinal functions to solve fractional 
nonlinear Volterra and Fredholm integro-
differential equations. Our main aim is to generalize 
Chebyshev cardinal operational matrix to fractional 
calculus. It is worthy to mention here that, the 
method based on using the operational matrix of an 
interpolate function for solving differential 
equations is computer oriented. 

The rest of the paper is organized as follows: 
Basic concepts of fractional differential problems 
are discussed in section 2. Section 3 is devoted to 
the analysis of the methods and the construction of 
operational matrix for fractional derivative. 
Application of the proposed method for fractional 
problems is given in section 4. The numerical 
results for effective confirmation of the proposed 
methods are given in section 5. 
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2. Concepts of fractional problems 

Some basic definitions and properties of the 
fractional calculus theory used further in this paper 
are given. 
 
Definition 2.1. A real function ݂ሺݔሻ, ݔ  0, is said 
to be in the space ܥఓ, ߤ א ܴ, if there exists a real 
number   ሻݔsuch that ݂ሺ ߤ ൌ ݔ ଵ݂ሺݔሻ, where 
ଵ݂ሺݔሻ א ఓܥ ሾ0,1ሻ. Clearlyܥ ؿ ߚ ఉ ifܥ   .ߤ

 
Definition 2.2. A function ݂ሺݔሻ, ݔ  0 is said to 
be in the space ܥఓ, ݉ א ܰ  ሼ0ሽ, if ݂ሺሻ א  .ఓܥ
 
Definition 2.3. The left sided Riemann - Liouville 
fractional integral operator of order ߙ  0 of a 
function ݂ א ߤ				,ఓܥ  െ1, is defined in [27] as 
follows: 
 

ሻݔሺఈሻ݂ሺܬ ൌ
1

Γሺߙሻ
න  
௫



݂ሺݐሻ

ሺݔ െ ሻଵିఈݐ
 	,ݐ݀

ߙ			                 ݔ								,0  0, 
 
ሻݔሺሻ݂ሺܬ ൌ ݂ሺݔሻ.				                                               (1) 
 
Definition 2.4. Let ݂ א ଵିܥ

 , ݉ א ܰ  ሼ0ሽ. The 
Caputo fractional derivative of ݂ሺݔሻ is defined as in 
[27]: 
 

ሻݔሺఈሻ݂ሺܦ ൌ ൝
݉				,ሻݔሺିఈሻ݂ሺሻሺܬ െ 1 ൏ ߙ ൏ ݉,݉ א ܰ,
ሺ௫ሻ

௫
ߙ																																										, ൌ ݉.

(2) 

 
It can be shown that [27-29]: 
 
ሺఔሻ݂ܬሺఈሻܬ		.1 ൌ ,ߙ			,ሺఈାఔሻ݂ܬ ߥ  0, ݂ א ,ߤܥ

ߤ  0. 

2. ఊݔሺఈሻܬ ൌ
Γሺߛ  1ሻ

Γሺߙ  ߛ  1ሻ
ߙ				,ఈାఊݔ  0, 

ߛ  െ1, ݔ  0. 

3. ሻݔሺఈሻ݂ሺܦሺఈሻܬ ൌ ݂ሺݔሻ െ   

ିଵ

ୀ

݂ሺሻሺ0ାሻ
ݔ

݇!
,	 

ݔ		  0,				݉ െ 1 ൏ ߙ  ݉. 
ሻݔሺఈሻ݂ሺܬሺఈሻܦ		.4 ൌ ݂ሺݔሻ,				ݔ  0,

݉ െ 1 ൏ ߙ  ݉, 
ܥሺఈሻܦ		.5 ൌ  	ݐ݊ܽݐݏ݊ܿ		ݏ݅		ܥ					,0
ఉݔሺఈሻܦ		.6 ൌ ߚ				,0 א ܰ								ߚ ൏ ሾߙሿ,					 

	 ܰ ൌ ሼ0,1, … ሽ 

7. ఉݔሺఈሻܦ ൌ
Γሺߚ  1ሻ

Γሺߚ െ ߙ  1ሻ
 			,ఉିఈݔ

 
ߚ	 א ܰ			ߚ  ሾߙሿ.                                                 (3) 
 

The Caputo fractional derivative is considered 
here because it allows traditional initial and 
boundary conditions to be included in the 
formulation of the problem.  

3. Analysis of the methods 

In this section, we describe a brief review of the 
Chebyshev cardinal functions for solving fractional 
differential equations. 

Chebyshev cardinal functions of order N in 
ሾെ1,1ሿ are defined as [30]: 
 

߶ሺݔሻ ൌ
ேܶାଵሺݔሻ

ܶᇱேାଵ൫ݔ൯൫ݔ െ ൯ݔ
	,				 

		݆ ൌ 1,2, . . . , ܰ  1,                                              (4) 
 
where ேܶାଵሺݔሻ is the first kind of Chebyshev 
function of order ܰ  1 in ሾെ1,1ሿ defined by  
 
ேܶାଵሺݔሻ ൌ cos൫ሺܰ  1ሻarccosሺݔሻ൯,	                   (5) 

 
and ݔ, ݆ ൌ 1, 2, . . ., ܰ  1, are the zeros of 

ேܶାଵሺݔሻ defined by cosሺሺ2݆ െ 1ሻ/ሺ2ܰ  2ሻሻ, ݆ ൌ
1, 2, … 		 , ܰ  1. We apply ݐ ൌ ሺݔ  1ሻ2/ܮ to 
use these functions on ሾ0,  ሿ. Now any functionܮ
݂ሺݐሻ on ሾ0,  ሿ can be approximated asܮ
 
݂ሺݐሻ ൌ ∑  ேାଵ

ୀଵ ݂ሺݐሻ߶ሺݐሻ ൌ  ሻ,                (6)ݐΦேሺ்ܨ	
 
where ݐ, ݆ ൌ 1, 2, … , ܰ  1, are the shifted 
points of ݔ, ݆ ൌ 1, 2, … , ܰ  1, by transforming 

ݐ ൌ
ሺ௫ାଵሻ

ଶ
 (here we choose ݐ so that, ݐଵ 	൏ ଶݐ 	൏

൏		ڮ ܨேାଵ), andݐ ൌ ሾ݂ሺݐଵሻ, ݂ሺݐଶሻ, … , ݂ሺݐேାଵሻሿ்,	 
 
Φேሺݐሻ ൌ ሾ߶ଵሺݐሻ, ߶ଶሺݐሻ, . . . , ߶ேାଵሺݐሻሿ்.			             (7) 

				 
Note that the functions ߶ሺݐሻ are satisfied in the 

relation 
 

߶ሺݐሻ ൌ ,ߜ ൌ ൜
1,						݆ ൌ ݅,
0,					݆ ് ݅,								 

݅ ൌ 1,… ,ܰ  1. 
 

So we have  
 
Φேሺݐሻ ൌ ݁,					݅ ൌ 1,… ,ܰ  1                            (8) 
 
where ݁ is the ݅th column of unit matrix of order 
ܰ  1. 

3.1. The operational matrix of derivative 

The differentiation of vector Φே in (7) can be 
expressed as 
 
ΦԢே ൌ ۲Φே,	                                                         (9) 
 
where۲ is ሺܰ  1ሻ ൈ ሺܰ  1ሻoperational matrix of 
derivative for Chebyshev cardinal functions. 

It is shown [24] that the matrix ۲ is the form 
 

۲ ൌ 
߶′ଵሺݐଵሻ ڮ ߶′ଵሺݐேାଵሻ

ڭ ڰ ڭ
߶′ேାଵሺݐଵሻ ڮ ߶′ேାଵሺݐேାଵሻ

,		              (10) 
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where 
 

߶′ሺݐሻ ൌ   

ேାଵ

ୀଵ
ஷ

1
ݐ െ ݐ

,										݆ ൌ 1,… ,ܰ  1, 

 

߶′ሺݐሻ ൌ
ߚ

ܶ′ேାଵ൫ݐ൯
ෑ  

ேାଵ

ୀଵ
ஷ,

ሺݐ െ  								,ሻݐ

 
		݆, ݇ ൌ 1,… ,ܰ  1,				݆ ് ݇,		                             (11) 
 
and ߚ ൌ 2ଶேାଵ/ܮேାଵ. 

3.2. The operational matrix of fractional derivative 

The fractional differentiation of vector Φேሺݐሻ in 
(7) can be expressed as  
 
ሺఈሻΦேܦ ൌ 		۲	ఈΦே,                                            (12) 
 
where ۲ఈ is ሺܰ  1ሻ ൈ ሺܰ  1ሻoperational matrix 
of fractional derivative for Chebyshev cardinal 
functions. The matrix ۲ఈ can be obtained by the 
following process. Let 
 
ሻݐሺఈሻΦேሺܦ ൌ ሾ߶ଵ

ሺఈሻሺݐሻ, ߶ଶ
ሺఈሻሺݐሻ, . . . , ߶ேାଵ

ሺఈሻ ሺݐሻሿ்.	      (13) 
 
Note that 
 
்ಿశభሺ௧ሻ

௧ି௧ೕ
ൌ ߚ ൈ ∏ 	ேାଵ

ୀଵ
ஷ

ሺݐ െ                   (14)														ሻ.ݐ

 
Using Eqs. (2), (7) and (14) the function ߶

ሺఈሻሺݐሻ 
can be approximated as 
 
߶
ሺఈሻሺݐሻ ൌ ߚ ൈ

ଵ

்ಿశభ൫௧ೕ൯
ሺ∏ 	ேାଵ

ୀଵ
ஷ

ሺݐ െ ሻሻݐ
ሺఈሻ.				   (15) 

 
Also, we can expand ∏ 	ேାଵ

ୀଵ
ஷ

ሺݐ െ  ሻ asݐ

 

ෑ	

ேାଵ

ୀଵ
ஷ

ሺݐ െ ሻݐ ൌ ேݐ െ

ۉ

ۈ
ۇ

 	
భஷ

ଵஸభஸேାଵ

భݐ

ی

ۋ
ۊ
ேିଵݐ



ۉ

ۈ
ۇ

 	
భ,మஷ

ଵஸభழమஸேାଵ

మݐభݐ

ی

ۋ
ۊ
ேିଶݐ

െ		… ሺെ1ሻேෑ	

ேାଵ

ୀଵ
ஷ

 		,ݐ

 

݆ ൌ 1,2, … , ܰ  1. ሻ                                            (16) 
 
Lemma 3.1. Let Ԅ୬ሺxሻ be a Chebyshev cardinal 
function such that n ൏ then DԄ୬ሺxሻ ߙ ൌ 0.  
 
Proof: Using Eqs. (3) in Eq. (16) the lemma can be 
proved. 
For 0 ൏ ߙ ൏ 1 using (16), we get  
 

߶
ሺఈሻሺݐሻ ൌ ߚ ൈ

1
ܶԢேାଵሺݐሻ

ሺෑ	

ேାଵ

ୀଵ
ஷ

ሺݐ െ ሻሻሺఈሻݐ

ൌ
ߚ

ܶԢேାଵሺݐሻΓሺܰ  1 െ ሻߙ
 

				ൈ ሾܰ! ேିఈݐ െ ሺN െ αሻሺܰ

െ 1ሻ! ሺ  	
భஷ

ଵஸభஸேାଵ

ݐభሻݐ
ேିଵିఈ 

ሺN െ αሻሺN െ α െ 1ሻሺܰ

െ 2ሻ! ሺ  	
భ,మஷ

ଵஸభழమஸேାଵ

ݐమሻݐభݐ
ேିଶିఈ െڮ 

				ሺെ1ሻሺܰെ1ሻෑሺN െ ߙ െ ݇ሻ	

ேିଶ

ୀ

 

ൈ ሺ  	
భ,మ,…ሺಿషభሻஷ

ଵஸభழమழڮழሺಿషభሻஸேାଵ

మݐభݐ … ݐሺಿషభሻሻݐ
ଵିఈሿ 

 
	݆ ൌ 1,2, … ,ܰ  1.                                              (17) 
 

Any function ߶
ሺఈሻሺݐሻ, using (6) can be 

approximated as  
 
߶
ሺఈሻሺݐሻ ൌ ∑ 	ேାଵ

ୀଵ ߶
ሺఈሻሺݐሻ߶ሺݐሻ.	                       (18) 

 
Comparing (12) and (18), we get 

 

۲	ఈ ൌ 
߶ଵ
ሺఈሻሺݐଵሻ ڮ ߶ଵ

ሺఈሻሺݐேାଵሻ
ڭ ڰ ڭ

߶ேାଵ
ሺఈሻ ሺݐଵሻ ڮ ߶Nାଵ

ሺఈሻ ሺݐேାଵሻ
,               (19) 

 
where the entries of matrix 		۲	ఈ can be found using 
Eq. (17). 

For example for ܰ ൌ 2 and ܮ ൌ 1, we have 
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۲	ఈ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

32ሾ2! ଵݐ
ଶିఈ െ ሺݐଶ  ଵݐଷሻݐ

ଵିఈሿ
Γሺ3 െ ଵሻݐሻܶԢଷሺߙ

32ሾ2! ଶݐ
ଶିఈ െ ሺݐଶ  ଶݐଷሻݐ

ଵିఈሿ

Γሺ3 െ ଵሻݐሻܶᇱଷሺߙ
32ሾ2! ଷݐ

ଶିఈ െ ሺݐଶ  ଷݐଷሻݐ
ଵିఈሿ

Γሺ3 െ ଵሻݐሻܶԢଷሺߙ
32ሾ2! ଵݐ

ଶିఈ െ ሺݐଵ  ଵݐଷሻݐ
ଵିఈሿ

Γሺ3 െ ଶሻݐሻܶԢଷሺߙ
32ሾ2! ଶݐ

ଶିఈ െ ሺݐଵ  ଶݐଷሻݐ
ଵିఈሿ

Γሺ3 െ ଶሻݐሻܶԢଷሺߙ
32ሾ2! ଷݐ

ଶିఈ െ ሺݐଶ  ଷݐଷሻݐ
ଵିఈሿ

Γሺ3 െ ଶሻݐሻܶԢଷሺߙ
32ሾ2! ଵݐ

ଶିఈ െ ሺݐଵ  ଵݐଶሻݐ
ଵିఈሿ

Γሺ3 െ ଷሻݐሻܶԢଷሺߙ
32ሾ2! ଶݐ

ଶିఈ െ ሺݐଵ  ଶݐଶሻݐ
ଵିఈሿ

Γሺ3 െ ଷሻݐሻܶԢଷሺߙ
32ሾ2! ଷݐ

ଶିఈ െ ሺݐଵ  ଷݐଶሻݐ
ଵିఈሿ

Γሺ3 െ ଷሻݐሻܶԢଷሺߙ
ی

ۋ
ۋ
ۋ
ۋ
ۊ

, 

 

and so for ߙ ൌ
ଵ

ଶ
, we have 

۲	భ
మ
ൌ ൮

1.967		 0.212	 െ0.372
െ1.418	 1.418	 1.418
െ0.549	 െ1.630	 െ1.046

൲.           (20) 

 
Remark 3.2. If ߙ ൌ ݊,				݊ א ܰ, then 					۲	 ൌ ۲୬.  

3.3. The operational matrix of integral  

The integral and fractional integral of vector Φே 
in (7) can be expressed as 
 
 	
௫
 Φே ൌ ۷Φே,													                                       (21) 

 
where ۷ and ሺܰ  1ሻ ൈ ሺܰ  1ሻ operational 
matrix of integral for Chebyshev cardinal functions. 
The matrix ܫ can be obtained by the following 
process. Let 
 
 	
௫
 Φேሺݐሻ݀ݐ ൌ ሾ 	

௫
 ߶ଵሺݐሻ݀ݐ,

. . . ,  	
௫
 ߶ேାଵሺݐሻ݀ݐሿ்.			                                         (22) 

 
Using Eq. (16), any function ߰ሺݔሻ ൌ  	

௫
 ߶ሺݐሻ݀ݐ 

can be approximated as 
 
߰ሺݔሻ ൌ ∑ 	ேାଵ

ୀଵ ߰ሺݐሻ߶ሺݔሻ.							                       (23) 
 

Comparing Eqs. (21) and (23), we get  
 

۷థ ൌ 
߰ଵሺݐଵሻ ڮ ߰ଵሺݐேାଵሻ
ڭ ڰ ڭ

߰ேାଵሺݐଵሻ ڮ ߰ேାଵሺݐேାଵሻ
൩,	                (24) 

 
where the entries of the matrices ۷థ can be found 
using Eq. (16) as follows 
 

߰ሺݐሻ ൌ න 	
௫


߶ሺݐሻ݀ݐ ൌ 

ߚ
ܶԢேାଵሺݐሻ

ሾ
ேݐ

ܰ  1
െ ሺ  	

భஷ
ଵஸభஸேାଵ

భሻݐ
ேݐ

ܰ

 ሺ  	
భ,మஷ

ଵஸభழమஸேାଵ

మሻݐభݐ
ேିଵݐ

ܰ െ 1

െڮ 



ۉ

ۈ
ۇ

 	
భ,మஷ

ଵஸభழమஸேାଵ

మݐభݐ

ی

ۋ
ۊ ேିଵݐ

ܰ െ 1
െڮ

 ሺെ1ሻேෑ	

ேାଵ

ୀଵ
ஷ

 				,ሿݐݐ

 
݆ ൌ 1,2, … , ܰ  1.																			                              (25) 

4. Application of the operational matrix of 
fractional derivative 

In this section, we apply the operational matrix of 
fractional derivative to solve nonlinear Volterra and 
Fredholm integro-differential equations of 
fractional order.  

4.1. Nonlinear Volterra integro-differential 
equation of fractional order 

Consider the nonlinear Volterra integro-
differential equations of the second kind of 
fractional order [15] 
 
ሻݔሺݕሺఈሻܦ െ ߣ  	

௫


,ݔሺܭ ݏሻሻ݀ݏሺݕሺܨሻݏ ൌ ݃ሺݔሻ, 0  ݔ ൏ 1,    (26) 

 
with supplementary conditions 
 
ሺሻሺ0ሻݕ ൌ ݀,				݅ ൌ 0…݊,						݊ ൏ ሾߙሿ,	                (27) 
 
where ݃ א ܭ				,ଶሺሾ0,1ሻሻܮ א  ଶሺሾ0,1ሻଶሻ are knownܮ
functions, ݕሺݔሻ is unknown function, ܦሺఈሻ is the 
Caputo fractional differentiation operator of order ߙ 
and ܨሺݕሺݏሻሻ is a polynomial of ݕሺݔሻ with constant 
coefficients. Moreover, these equations are 
encountered in combined conduction, convection 
and radiation problems [27,31,32]. Local and global 
existence and uniqueness solution of the integro-
differential equation given by (26)-(27) is given in 
[33]. 

To solve problem (26)-(27), we approximate 
 ሻ and integral formula in (26) by cardinalݔሻ, ݃ሺݔሺݕ
Chebyshev functions on ሾ0,1ሿ and define 
operational matrices as follows 
 

ܦሻ்ݔሻΦேሺݔሺݕሺఈሻܦ
ሺఈሻ்ܥ ൌ  ,ሻݔఈΦேሺ	۲	்ܥ
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݃ሺݔሻ 	

ேାଵ

ୀଵ

݃߶ሺݔሻ ൌ  ,ሻݔΦேሺ்ܩ

݈൫ݔ, ,ݏ ሻ൯ݏሺݕ ൌ ,ݔሺܭ  ሻ൯ݏሺݕ൫ܨሻݏ

 	

ேାଵ

ୀଵ

 	

ேାଵ

ୀଵ

݈ ൬ݐ, ,ݐ ܨ ቀݕ൫ݐ൯ቁ൰߶ሺݔሻ߶ሺݏሻ

ൌ 	Φேሺݔሻ்		ۺ	Φேሺݏሻ, 

න 	
௫


,ݔሺܭ නۺሻ்ݔΦேሺݏሻሻ݀ݏሺݕሺܨሻݏ 	

௫


Φேሺݏሻ݀ݏ 

ൌ Φேሺݔሻ்	ۺ	۷థΦேሺݔሻ,                                        (28) 
where	ܩ ൌ ሾ݃ଵ, … , ݃ேାଵሿ், 
݃ ൌ ݃ሺݐሻ,				݅ ൌ 1,… ,ܰ  1, 

݈, ൌ ݈ ൬ݐ, ,ݐ ܨ ቀ்ܥΦ൫ݐ൯ቁ൰,			 
 
	݅, ݆ ൌ 1,… ,ܰ  1 and ܥ ൌ ሾܿଵ,… , ܿேାଵሿ் is an 
unknown vector. Employing (28) in (26), we have  
 
ܴேାଵሺݔሻ ൌ ሺ்ܥ	۲	ఈ் െ ۷థۺሻ்ݔΦேሺߣ െ ሻݔሻΦேሺ்ܩ ൌ 0.      (29) 
 

Collocating Eq.(29) in the points ݐ,				݅ ൌ ݊ 
2,… ,ܰ  1, we get 
 
ܴேାଵሺݐሻ ൌ ሺ்ܥ	۲	ఈ் െ ݁ߣ

۷థۺ் െ ሻ்݁ܩ ൌ 0,    (30) 
 
where ݁ is the ݅th column of unit matrix of order 
ܰ  1. Substituting Eqs. (9) and (28) in Eq. (27), 
we get  
ሺ0ሻݕ ൎ Φேሺ0ሻ்ܥ ൌ ݀, 
Ԣሺ0ሻݕ ൎ ۲Φேሺ0ሻ்ܥ ൌ ݀ଵ, 
 										ڭ
 
ሺሻሺ0ሻݕ ൎ ۲Φேሺ0ሻ்ܥ ൌ ݀.                            (31) 
 

These equations together with Eq. (30) generate 
ܰ  1 nonlinear equations which can be solved by 
several methods such as Newton iterative method. 
Consequently ݕሺݔሻ given in Eq. (26) can be 
calculated.  

4.2. Nonlinear Fredholm integro-differential 
equation of fractional order 

Consider the Nonlinear Fredholm integro-
differential equation of fractional order 
 
ሻݔሺݕሺఈሻܦ െ ߣ  	

ଵ


,ݔሺܭ ݏሻሻ݀ݏሺݕሺܨሻݏ ൌ ݃ሺݔሻ, 0  ݔ ൏ 1,   (32) 

 
with supplementary conditions 
 
ሺሻሺ0ሻݕ ൌ ݀,				݅ ൌ 0…݊,						݊ ൏ ሾߙሿ,                (33) 
 
where ݃ א ܭ				,ଶሺሾ0,1ሻሻܮ א  ଶሺሾ0,1ሻଶሻ are knownܮ
functions, ݕሺݔሻ is unknown function, ܦሺఈሻ is the 
Caputo fractional differentiation operator of order ߙ 
and ܨሺݕሺݏሻሻ is a polynomial of ݕሺݔሻ with constant 
coefficients. 

To solve problem (32) and (33), we approximate 
 ሻ by cardinal Chebyshev functions onݔሻ and ݃ሺݔሺݕ
ሾ0,1ሿ and define operational matrices as follows 
 

ܦሻ்ݔሻΦேሺݔሺݕሺఈሻܦ
ሺఈሻ்ܥ ൌ Φேሺݔሻ்	۲	ఈ்ܥ, 

݃ሺݔሻ 	

ேାଵ

ୀଵ

݃߶ሺݔሻ ൌ  ,ሻݔΦேሺ்ܩ

݈൫ݔ, ,ݏ ሻ൯ݏሺݕ ൌ ,ݔሺܭ ሻ൯ݏሺݕ൫ܨሻݏ  

 	

ேାଵ

ୀଵ

 	

ேାଵ

ୀଵ

݈ ൬ݐ, ,ݐ ܨ ቀݕ൫ݐ൯ቁ൰߶ሺݔሻ߶ሺݏሻ 

ൌ Φேሺݔሻ்		ۺ	Φேሺݏሻ,  

න 	
ଵ


,ݔሺܭ ݏሻ൯݀ݏሺݕ൫ܨሻݏ  

 
Φேሺݔሻ்	ۺ	  	

ଵ
 Φேሺݏሻ݀ݏ ൌ Φேሺݔሻ்	ۺ	۶Φேሺݔሻ,        (34) 

 
where	ܩ ൌ ሾ݃ଵ, … , ݃ேାଵሿ்,	 ݃ ൌ ݃ሺݐሻ, 

				݅ ൌ 1,… ,ܰ  1, ݈, ൌ ݈ ൬ݐ, ,ݐ ܨ ቀ்ܥΦ൫ݐ൯ቁ൰,	 

		݅, ݆ ൌ 1,… ,ܰ  1,	 
۶ isሺܰ  1ሻ ൈ ሺܰ  1ሻ operational matrix with 

 	
ଵ
 ߶ሺݐሻ݀ݐ ൌ ݄,,				݅, ݆ ൌ 1,… ,ܰ  1 and ܥ ൌ
ሾܿଵ, … , ܿேାଵሿ் is an unknown vector. Employing 
(34) in (32), we have 
 
ܴேାଵሺݔሻ ൌ ሺ்ܥ					ܦ	ఈ் െ ۶ۺሻ்ݔΦேሺߣ െ ሻݔሻΦேሺ்ܩ ൌ 0.    (35) 
 

Collocating Eq. (35) the points ݐ,				݅ ൌ ݊ 
2,… ,ܰ  1, we get 
 
ܴேାଵሺݐሻ ൌ ሺ்ܥ	۲	ఈ் െ ݁ߣ

۶ۺ் െ ሻ்݁ܩ ൌ 0.     (36) 
 

These equations together with Eq. (33) generate 
ܰ  1 nonlinear equations which can be solved. 
Consequently ݕሺݔሻ given in Eq. (32) can be 
calculated. 

5. Numerical examples 

In this section, we give the computational results of 
numerical experiments with methods based on the 
preceding sections, to support our theoretical 
discussion. The obtained results by the proposed 
method compared with the results of [16] in 
examples 1, 3 and [17] in examples 2, 4. Note that 
the error of [17] and [16] is shown with ܧ, where ݆ 
is size of operational matrix. 
 
Example 1. Consider the following fractional 
nonlinear integro-differential equation [16] 
 

ܦ
ଵ
ଶݕሺݔሻ െ න 	

ଵ


ሻ൯ݐሺݕ൫ݐݔ

ସ
ݐ݀ ൌ ݃ሺݔሻ,	 

	0  ݔ ൏ 1,																								                                    (37) 
 
subject to 
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ሺ0ሻݕ ൌ 0, 
 

where ݃ሺݔሻ ൌ
଼/ଷ	௫య/మିଶ	√௫

√గ
െ

ଵ

ଵଶ
 with exact ݔ	

solution ݕሺݔሻ ൌ ଶݔ െ  .ݔ
Figure 1 shows the plot of error with ܰ ൌ

3, 5, 7, 9 using the proposed method. This Fig. 
illustrates that by increasing ܰ, the error of results 
decrease rapidly. In Table 1 the results of the 
method are compared with the results of [16], 
which highlights more accuracy of the proposed 
method. The size of operational matrix in our 
method is ܰ  1. In Table 1 it is illustrated that the 
proposed method gives high accuracy with less 
computational cost compared with [16]. 
 

 

 

 
 
Fig. 1. Plot of error for ݕሺݔሻ with ܰ ൌ 3, 5, 7, 9 for 
example 1 
 
Example 2. Consider the following equation:  

ሻݔሺݕఈܦ   	
௫
 ൫ݕሺݐሻ൯

ଶ
ݐ݀ ൌ sinhሺݔሻ 

ଵ

ଶ
coshሺݔሻsinhሺݔሻ െ

௫

ଶ
,					  

	0  ݔ ൏ 1,										1 ൏ ߙ  2,  
 
ሺ0ሻݕ ൌ Ԣሺ0ሻݕ										,0 ൌ 1.                                   (38) 
 

The exact solution of this problem when ߙ ൌ 2 is 
ሻݔሺݕ ൌ sinhሺݔሻ. Figure 2 shows the results for 
ܰ ൌ 3 and various 1 ൏ ߙ  2. The comparisions 
show that as ߙ ՜ 2, the approximate solutions tend 
to exact solution. The error in the case ߙ ൌ 2, for 
different values of ܰ, is shown in Table 1 and Fig. 
3. These results show good agreement with the 
results of references [16, 17, 34].  
 

 
 
Fig. 2. Plot of the approximate solution of example 2 for 
some ߙ with ܰ ൌ 3  
 

 



 
 
 
59                     IJST (2013) A1: 53-62 

 
 
Fig. 3. Plot of error for ݕሺݔሻ with ܰ ൌ 3, 5, 7, 9 for 
example 2 
 
Example 3. Consider the following nonlinear 
Fredholm integro-differential equation, of order 

ߙ ൌ
ହ

ଷ
: [16] 

 
ܦ

ఱ
యݕሺݔሻ െ  	

ଵ


ሺݔ  ሻ൯ݐሺݕሻଶ൫ݐ

ଷ
ݐ݀ ൌ ݃ሺݔሻ, 0  ݔ ൏ 1,       (39) 

 
subject to 
 

ሺ0ሻݕ ൌ Ԣሺ0ሻݕ			,0 ൌ 0 
 

where ݃ሺݔሻ ൌ 3	 √
௫య √ଷሺଶ/ଷሻ

గ
െ

௫మ


െ

௫

ସ
െ

ଵ

ଽ
 with exact 

solution ݕሺݔሻ ൌ  .ଶݔ
Also, the size of operational matrix in our 

method, ܰ  1, is less than the size of operational 
matrix in [16], but the accuracy of this approach is 
higher than the results in [16]. 

Figure 4 shows the plot of error with ܰ ൌ
3, 5, 7, 9 using the proposed method. Similarly 
example 1, by increasing ܰ, the error of results 
decreases in this Fig. The results of the method 
compared with the results of [16] in Table 1 that 
highlights the proposed method more effectively.  
 

 

 

 
 
Fig. 4. Plot of error for ݕሺݔሻ with ܰ ൌ 3,5,7,9 for 
example 3. 
 
Table 1. Approximate of absolute error for ܰ ൌ 3, 5, 7, 9 
 

Examples ||ܧସ||ଶ ||ܧ||ଶ ||଼ܧ||ଶ ||ܧଵ||ଶ ||ܧଵଶ||ଶ 

 (N=3) (N=5) (N=7) (N=9) [16,17] 

1 
9.8ൈ
e െ 6

7.0ൈ
e െ 7

7.7ൈ
e െ 8 

5.8ൈ
e െ 36 

7.7ൈ
e െ 4

2 
1.8ൈ
e െ 3

1.1ൈ
e െ 5

2.4ൈ
e െ 8 

2.6ൈ
e െ 11 

1.3ൈ
e െ 6

3 
6.4ൈ
e െ 4

1.0ൈ
e െ 5

2.9ൈ
e െ 8 

6.7ൈ
e െ 35 

3.5ൈ
e െ 3

4 
1.3ൈ
e െ 2 

1.9ൈ
e െ 4 

7.5ൈ
e െ 7 

1.2ൈ
e െ 9 

1.6ൈ
e െ 6 

 
Example 4. In the following, we consider the 
fourth order equation: 
 

ሻݔሺݕఈܦ െ න 	
௫


݁௧൫ݕሺݐሻ൯

ଶ
ݐ݀ ൌ 1,						 

		0  ݔ ൏ 1,										3 ൏ ߙ  4, 
 
ሺ0ሻݕ				 ൌ Ԣሺ0ሻݕ ൌ ԢԢሺ0ሻݕ ൌ ԢԢԢሺ0ሻݕ ൌ 1.            (40) 
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Fig. 5. Plot of The approximate solution of 
Example 4 for some ߙ with ܰ ൌ 7.  
 

 

 
 
 
 
 
 

 
 
Fig. 6. Plot of error for ݕሺݔሻ with ܰ ൌ 3, 5, 7, 9 for 
example 4 
 

The exact solution of this problem when ߙ ൌ 4 is 
ሻݔሺݕ ൌ ݁௫. The numerical results for some ߙ 
between 3 and 4 are presented in Table 2. This 
Table shows that the obtained results by the 
proposed method are similar to Ref. [35, 17]. In 
Fig. 5, the comparisons show that as ߙ ՜ 4, the 
approximate solutions tend to exact solution. Figure 
6 shows the approximate solution and the plot of 
error with ܰ ൌ 3, 5, 7, 9 when ߙ ൌ 4 using 
proposed method.  
 
Table 2. Numerical results for example 4 in ܰ ൌ 4 
with agreement whth [16, 35] 
 
ߙ  ݔ ൌ

3.25 
[35]  

ߙ ൌ
3.25[1
6]  

ߙ ൌ
3.25  

ߙ ൌ
3.75[3
5]  

ߙ ൌ
3.75[1
6] 

 
ߙ ൌ
3.75

0  1.0 1.000
004  

1.000
000 

1.0 1.000
000 

1.000
000 

0.
1  

1.106
551 

1.105
258 

1.105
166  

1.106
151  

1.105
181 

1.105
176 

0.
2  

1.223
932 

1.221
892 

1.221
333 

1.223
227 

1.221
452 

1.221
489 

0.
3  

1.353
200 

1.352
313 

1.349
500 

1.352
308 

1.350
272 

1.350
292 

0.
4  

1.495
601 

1.496
762 

1.490
666 

1.494
636 

1.492
543  

1.493
172 

0.
5  

1.652
553 

1.663
409 

1.645
833 

1.651
615 

1.652
178 

1.651
950 

0.
6  

1.825
655 

1.843
799 

1.816
000 

1.824
824 

1.826
696 

1.828
683 

0.
7  

2.016
687 

2.044
381 

2.002
166 

2.016
024 

2.109
409 

2.025
663 

0.
8  

2.227
634 

2.277
591 

2.205
333 

2.271
769 

2.237
195 

2.245
416 

0.
9  

2.460
691 

2.526
496 

2.426
500 

2.460
475 

2.472
652 

2.490
704 

6. Conclusion 

In this paper we presented a numerical approach for 
solving the fractional Volterra and Fredholm 
integro-differential equations. The cardinal 
Chebyshev functions were employed. The obtained 
results showed that this approach can solve the 
problem effectively. 
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