[JST (2013) Al: 35-43
Iranian Journal of Science & Technology

http://www.shirazu.ac.ir/en

Simultaneous control of linear systems by Genetic
Algorithmsin state and output feedback

F. Saadatjoo™, V. Derhami? and S. M. Karbassi®

"Department of Computer Engineering, Institute for Higher Education of ACECR, Yazd, Iran
Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran
3Department of mathematics, Yazd University, Yazd, Iran
E-mail: fatemehsaadatjoo@gmail.com

Abstract

In this paper, Genetic Algorithms (GAs) are employed to control simultaneous linear systems in both state and
output feedback. First, the similarity transformation is applied to obtain parameterized controllers. This requires
solution of a system of equations and also some non-linear inequalities. GAs are used to solve these equations and
inequalities. Therefore, the paper presents an analytical method for finding parameterized controllers and employs
anumerical method to enhance the solution. Three numerical examples are presented to illustrate the effectiveness
of the method and to compare the results with previous results.
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1. Introduction

The problem of simultaneous stabilization of time
invariant linear systems

% (t)= Ax (t)+Bu,(t) , k=12,...,p
Y (1) =C X, (1) 1

is to find a state feedback controller matrix F (in
case of C,_ =1 ) with the feedback law u, = Fx,(t)

or to find a output feedback controller matrix K
with the feedback law U, = Ky, (t), such that the
eigenvalues of al closed loop systems
A.=A +BF o A.=A+BKC, for al
k=12,...,p lie in the left hand side of the

complex plane in the prescribed bounded region.
Investigation into this problem was first
introduced by Saeks and Murray [1], based on the
work of Birdwell et a [2]. In the case of two plants,
the simultaneous stahilization problem reduces to a
well-known problem [3] and a proper stable
controller is found to stabilize both plants.
However, simultaneous stabilization of more than
two plants, in genera, is difficult [4]. An anaytical
solution to the simultaneous stabilization problem is NP-
hard to find [5] and so no analytical agorithm can be
devised to lead to a simple or rapid solution.
Furthermore, the numerical methods are replaced instead
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of the analytica methods. Such approaches had
focus in two main areas. The first deals with the
solution to the simultaneous stabilization problem
itself, in which the solution to the problem has been
tackled from a number of different directions,
including polynomials [6], minimum phase [7],
system inversion [8], optimization-based [9],
similarity transformation [10] and decomposition-
based [11]. The second deals with performance
improvement for the simultaneous stabilization, or
simultaneous optimal control, in which nonlinear
optimization algorithms have been proposed [12].

Simultaneous stabilization problem of a finite
collection of distinct systems under a single
feedback controller in many engineering problems
is important, such as control of aircraft [13],
particularly when different conditions are produced
by dynamical models. A single stabilization control
provides system simplicity and reliability. For
example, it could be used as a backup
reconfigurable control under actuation system
damage or failure [11].

In [13], a nonlinear state feedback controller
which simultaneously stabilizes a collection of
single input systems is presented. In [14], necessary
and sufficient conditions embedded in the
solvability of a constrained optimization problem
for the existence of controllers to simultaneously
stabilize a collection of single input—multi output
systems are obtained. In [15], the method of [14]
was modified for both output and state feedback. In
[16] the problem was considered only for single
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input systems. In [17] the optima simultaneous
state feedback controller by numerical solution of a
minimizing problem is obtained. In [18] an
auxiliary minimization problem for computing an
approximate solution instead of original problem is
solved.

In these papers, an enormous amount of
computation is needed to find a simultaneous
controller, usually resulting in a big norm when
intelligent methods are not implemented. One of the
intelligent methods used is GAs. This method was
first applied for assigning eigenvalues in state
feedback control [19]. Artificia intelligence, like
GAs s beneficial when analytical methods fail. The
GAs consider al the constraints on the controller
matrix simultaneously and obtain loca optimal
points [19]. GAs have the method of global search
in natural selection of genes. They act on existing
individual population that has been selected
randomly in the beginning of the search in order to
improve the solution.

In this paper, a new method for computing
simultaneous state feedback and output feedback
for eigenvalue assignment of a collection of linear
systemsin aregion is presented. A set of equations
and inequalities are obtained and then are
transformed to an optimization problem. Enormous
computational power of GAs is implemented for
solving this kind of optimization problem. Here,
first by using GAs and an objective function
depending on eigenvalues, an optimal problem is
solved for finding a controller matrix. A fitness
function satisfying the optimal value of the set of
equations and the set of inequalities is introduced.
Then, by adjusting other parameters of GAs the
solution is obtained. Comparing our work with
previous methods, results in simpler computations
using an intelligent method of GAs. Indeed, using
Riccati equations [18], cost functions and
decomposition-based methods [11] requires very
complicated computations, whereas using the
algorithm presented here is much more straight
forward.

The structure of the paper is as follows. In the
next section, formulation of the problem is
presented. Also, similarity transformations for
finding state and output feedback matrices are
introduced. In the third section, a method based on
optimization for solving simultaneous system of
linear equations and non-linear inegualities is
introduced. Also, the resulting method is
summarized in an algorithm. Finaly, some
examples are illustrated in order to show the
effectiveness of the presented method and a
comparison is made with the previous results in
[18] and [11].

2. Problem formulation

Consider a set of P time invariant systems of (1),
where X, € R"is the state vector, u, € R"is
input vector and Y, € R'is the output vector of

k" system. A ,B,,C, are constant matrices of

dimensions NxN,NxM and I xN respectively

with the following assumptions:

1. (A, B,) ae controllable and (A, ,C,) are
observable.

2. B, and C, havefull row ranks.

Now consider A,=A +B/F, closed-loop
systems with the state feedback control
lawsu, = Fx. or A, =A +BKC, closed-
loop systems with the output feedback control
lawsu, = Ky, . The objective is to find a state or
output feedback matrix for al the P systemswhich

satisfies the above assumptions, such that all the
roots of the characteristic equations of each closed-
loop system lie in a prescribed region. Here, it is
assumed that the roots lie inside a rectangular
region defined as:

Q=(seC| a<red (s)<f,-y<imag(s)<y} (2

where 2€eR,eR andy € R. This region is
considered symmetric with respect to the rea axis
in order to obtain a real state feedback matrix

F and areal state feedback matrix K [18]. A brief
review of the paper [20] is recalled for the
computation of the state and output feedback
matrix.

2.1. Smilarity Transformation Method

An existing and analytical method of finding a
state and an output feedback matrix by similarity
transformations is given in [21]. For computing

state feedback matrix F, and output feedback
matrix K, for al the psystems, first the
augmented matrix [B,, A, l,] is transformed to

vector  companion  form [I§k,R,Tk‘l] by

elementary similarity operations [20]. Then state
feedback and output feedback matrix can be found
from:

Fk = Bk_rlJ(_GkoJer)Tk_l ©)

K Cy = Bk_é (-G + G )Tk_l )
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Where, B,,,G,, and T, are block matrices with
appropriate dimensions and are selected from

vector companion form [ I§k , 'Zk T as[20]:

~ B
Bk{o © }

x Gyo

A = ©)
I n-m ’On—m,m

Let the parametric closed-loop matrix of each

system with the desired eigenvalues be T, in the
following form:

(TP PEPRRR ¢ PP
= G
rkz:{l K },Where Gy, = :gk21gk22"'gk2n

n-m?%“n-mm

(6)

gkml gka"'gkmn

Inwhich G, , is a parametric matrix of dimension
Mx N obtained from first M rows of fm :

The closed-loop system eigenvalues of A, can
be located in a prescribed spectrum by f \, - For this
reason, it is sufficient to have det(T,, — 4,1) =0,
which leads to the characteristic polynomial of I:M
as:
det(rk/l _ﬂ'kl ):Pkn (ﬂ'k) 7
where
Po(A)=(D" (A +Cu iy +...+ Cenn +Cn ) ®

is the characteristic polynomial of the closed-loop

system.
Since it is necessary that al the roots of the
characteristic polynomial lie in the

spectrum A, ={ A, A 5s- -, Ay, } . itisclear that:

P () =(-D" (A = A) (Ao = Az)- (A = A) - (9)

By equating the above equalities,
¢, (i =1,2,...,n) can be computed [20] as:

Ca = _Zinzl (A)

G2 :Zin,j:l#j (ﬂ’kiilq) 10
. 10

ckn=(—1)“f[<ﬂm)

If g »(=12,...,n) are  known, then
Ce1»Cypy--r G, CaN be found. Now, with direct
computation  of det(T,, — 4,1)=P, (%)
parametrically and with having coefficients of

characteristic polynomial in equation (10), a set of
system of non-linear equations results, as follows:

where, g, (i=12,....om, j=12,...,n) ae

the elements of G,,and f,;,(i=212,...n) are
parametric non-linear polynomials that are obtained
by computing det(f w—Al) . The set of
equations (11) is a set of non-linear system with
Nequations and NMunknowns. By arbitrary
selection of N =n(m—1) unknowns this system
can be solved.

2.2. Finding a simultaneous state feedback matrix

In this section, we introduce a new method for
computing a simultaneous state feedback by
similarity transformations for a collection of
controllable systems. Consider the given systems
(2). For the systems to have a simultaneous state
feedback matrix, the equation (3) must be changed
to:

F=B,3(-G,, +G, )T, ", foreach k =1,2,...,p (12)

Here, P equations are obtained and by equating
them together other equations are derived. For
example, if K =i and then K = | is considered, it
follows that:

F= Bfé(_Gjo +Gjﬂ)Tj71 = Bi?)l(_Gio +Gi),)Ti71 (13)
From which

Gm - Bi OBjitl)Gj)ijilT i :Gi 0o~ Bi oBf(IJGj oTjilTi (14)
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Here, unknowns of the equations areG;; ,G,, .

The remaining matrices are computed from
transformation  of pars (A,B) and

(A;,B;)into vector companion form as

mentioned before. Hence, the left hand side of (14)
is an unknown matrix of dimensions mMx N and the
right hand side is a known matrix of dimensions
mxn. Now, by equating the corresponding
elements of these matrices, MmN eguations with
2mn unknowns are obtained. Finaly, by equating
the right hand side of (12) term by term for each
i=1,say,and j =2,..., p, (p—1)mn equations
in the form of (14), with MNP unknowns are
derived.

Solution of these equations results in a state
feedback matrix, but does not guarantee the
stability of the systems under consideration. For
this reason, other constraints must be considered
such that the systems are stabilized. In order to
stabilize the systems, the defined region in (2) must
lie in the left hand side of the complex plane, so
that the eigenvalues of systems (1) lie inside this
region. The equations of (11) guarantee eigenvalue
assignment of systems (1) in a prescribed spectrum.
Although the new method does not allocate the
eigenvalues exactly, it can assign the eigenvaluesin
a prescribed rectangular symmetric bounded region
with respect to the real axis. Hence, upper bounds
and lower bounds for the left hand side of (11) are

considered where:  C; ., are the upper bounds and
Cin,(1=212,...,n) are the lower bounds as

given below:

Cimax = _n(ima()
C2ma>< = (_1) 2 n(ﬂ'rznax) and

Comax = (_1)n(ﬂ’rrl1ax)
Cimin = _n(ﬂmin)
Comin = (_1)2n(ﬂ'2 )

min

(15)

Cnmin = (_1)n(ﬂ“rr1nin)
where A

max 1S SEtt0 aandA is st to S as

introduced in (2). In this case, equations (10) are
transformed to the following inequalities:

Cimin < fkl(gkurgklz vvvv Yians Okars Gk -+ Geans -+ Yrtr G-+ gkmn)éclmao(
min = sz(gknv Y2+ Gianr Gkars Guzzs -5 Yzns- o Yirtr G-+ > gkrm)S Comax

These inequalities can be rewritten in the form;

fkl(gkuv Giazs-- Yians Gkarr Gkzzs-- o Gans--os G Gkmzs -+ gkrm)7 ma <0
sz(gkuv Giazs-- o Gians Jkar Gkzzr-+ o Gans--es G Gkmzs -+ gkrm) ~Comex <0

fkn(gkn’ Giazs--or Gians Gkars Gozs -+ Gians+ s Yirts Gimz s+ -+ gkrm) ~Comax < 0
- fkl(gklll Giazs-or Gkans Gkarr Gkzzs -+ Gkans--os Yimts Gkmz s+« -5 gkrm) +Cpin < 0
= fa( Qi Ghazr--0 Gian Gkar Gz Gicznes Gints Jhamz s+ +» Giem) + Comin <0

- fkn(gkll'gklz vvvvv Yian» Gzt Gkzzs -+ Gianse-os gkn\llgkmzl“"ghm)+cnm\ngo (17)

where now, 2Np inequaities with nNMp
unknowns are obtained. By using the set of
equalities (14) and the set of inequalities (17) and
by solving them simultaneously, a vector
g € R™ whose elements are defined in (17) can

be found such that a simultaneous state feedback
matrix which stabilizes systems (1) is obtained.

2.3. Finding a simultaneous output feedback matrix

In this section, a new method for computing a
simultaneous output feedback by similarity
transformations for a collection of controllable
systems is introduced. Consider the given systems
(2). For the systems to have a simultaneous output
feedback, equation (4) should be changed to:

KC, =B s(-G,,+G, )T, ", foreach k =1,2,...,p (18)

The left hand sides of (18) are not equal for each
of the P equations. Therefore, the right hand sides

of (18) for each of the P equations cannot be

equated as it was done in the previous section. To
overcome this problem, elementary similarity

operations on the pairs (C, ,1,,) are performed in

order to obtain (C, , E, ) such that [21]:

C.=CE.=[1,0,,,]. k=12..p 19

Multiplying (18) by E, on the right hand side
yields:
KCEy :Bk_(l)(_GkO"'Gk/l)Tk_lEk
K 0, ]k -L2.p @

As aresult, now the p middle relations of (20)

can be equated to each other. For example, if K =1
and then K= jis considered, the following
equations will be derived:

Bji(-G,o+G,)T/'E, =Ba(-G,+G )T E =[k o0,,,] (21)

From which:
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G, -BoBG, T 'E,E T, =G, -B,B,iG, T 'EE'T (22

Now, the left hand side is an unknown matrix of
dimensions mx nand the right hand side is a
known matrix of dimensionsmxn. Hence, by
equating the corresponding elements, MmN equations
with 2mn unknowns are obtained. Finally, taking
k=12,...,p results in(p—1)mn equations
and as in (22) with MNP unknowns. Solution of

these equations results in an output feedback
matrix, but does not guarantee the stability of
controlled systems as before.  However, for
stabilizing the system the following approach is
devised.

Let al the N eigenvaluesof P systemsin (1) be

located in region (2) in the form:

Q ={ +1 B Oy T Begsee s Oy +1 Py } (23)
k=12...,p

Here,akj,ﬂkj,j =12,...,n are respectively
real parts and imaginary parts of corresponding
eigenvalues of the closed-loop systems of (1). For
eigenvalues in (23) to lay in the region (2) the
following inequalities for K =12,..., p must be
satisfied:
hi=a,-17<0 i=12,...,n
hkj =0-a,<0 j=n+1Ln+2...2n
he =f.—7<0r=2n+12n+2,....3n
he=—7-f<<0s=3n+13n+2,...,4n

(24)

In what follows a method for solving
simultaneously the set of equations (14) and
inequalities (17) for finding a state feedback matrix
or for solving simultaneously the set of equations
(22) and inequalities (24) for finding an output
feedback matrix is presented.

3. A method of solution

For solving systems of equations (14) and the
systems of inequalities (17) or systems of equations
(22) and the systems of inequalities (24)
simultaneously, the following lemma facilitates the
solution.

Lemma 3.1. Thetwo systems | and |l introduced
below are equivalent:

jl(x):O
jz(x):O

J,(x)=0
h(x)<0
h,(x)<0

and

h(x)<0
min j2(x)+ 200 +...+ j2(X)
st
h,(x)<0 (25)
h,(x) <0

Hl(x)so

if and only if the object function in system Il is
zero for the optimal point.

Proof: Let

X ={xeR"|h,(x) <0,h,(x) <0,...,h (x) <0} (26)
If the system | has afeasible solution X, , then

X € RS 1(Xo) = 1o (o) == 1 (%0) =0 (59
h(X,) <0,h,(X,)<0,...,h (X,) <0  (28)

From (28) it resultsthat X, € X and from (27)

(%) + I3 (%) +.+ j (%) =0 (29)

But since the object function of system Il is
non-negative, it takes its minimal value at zero,

hence, X, isafeasible solution for system 1 .

Conversely, if the optimized solution of system
Il is zero, then the system | also has a solution
and this compl etes the proof.

For solving simultaneously the system of
equations (14) and the inequalities (17) or the
system of equations (22) and the inequalities (24),
the lemma 3.1 may be used. For this purpose,
J;(X) in systemll must be replaced by the
equations introduced in (14) or in (22), and aso the
constraints of systemll must be replaced by the
inequalities (17) or (24). Then the fitness function
is obtained by linear combination of object function
and constraints of system |l which can be solved
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by GAs. Here the number of equations and
inequalities are kK=(p-1)mMn and | =4np,
respectively.

3.1. Selecting proper fitness function

For each p system defined in (1), the
eigenvalues can be assigned in a bounded region or
in a prescribed spectrum [21]. For assigning the
eigenvalues of a collection of controllable systems
in a prescribed region for simultaneous
stabilization, the systems of inequalities (17) or (24)
must be satisfied according to state or output
feedback control.

In using GAs for solving the set of equations (14)
and inequalities (17) or the set of equations (22)
and inequalities (24), it is necessary to apply a
proper fitness function. To simplify the fitness
function, avector H is defined in the form:

H = (hy. by, hl(4n)'h21'h22 vvvv h2(4n) ----- hpl’hp2 ----- hp(4n))
X ={xeR"[h,(x) <0,h,(\) <0,...,h (x) < O} (30)
where h, ,k=212,...,p,i=12,...,4n are the
constraints obtained from system |1 , and

p 4n

S=> > (sign(hy)+1) (31)
k=1 i=1

is defined in order to transform the inequalities of
system |l into a non-negative number. In order to
satisfy equation (31) considering condition (2) it is
necessary that S be zero. Fitness function is
obtained from nonlinear combination of (14) or
(22) with (31) in the form:

Y =2 (9)+ i5(9) +.. ot i ym(9)+S (32)

where j;, S=12,...,(p—1)mn are equations

obtained from (17) or (24). This fitness function is
implemented in GAs to solve the optimization
problem in mind. The feasible solution
corresponding to fitness function is a vector

ge R™ whose elements are the same as the
elements of G, , matrix. By substituting elements

of G,, matrix in (12) a state feedback matrix or in

(18) an output feedback matrix is obtained for
simultaneous control. The above results can be
summarized in the following algorithm.

3.2. The Algorithm

Object: To obtain simultaneous output feedback
matrix K, for which the eigenvalues of the closed-
loop systems G's are located in a prescribed
Spectrum.

Input: The controllable and observable system
matrices (A ,B,,C,) and the eigenvalue spectrums

Q, ={oy +1 Bty +1 B n e +if} k=12,...,p
where complex eigenvalues are in complex
conjugate pairs.

Output: The output feedback matrix K, such that
the eigenvalues of each closed-loop system fall into
the prescribed spectrum.

Step 1: Employ the agorithm given by [20] to
obtain Bk’é,Gko and Tk’lfor k=12,...,p.

Step 2: Obtain the coefficients of the characteristic
polynomials whose roots are the same as the
desired eigenvalue spectrums

Q, ={ay+ifa.au+ifom....an+if.} k=12, p-
Step 3: Obtain the characteristic polynomials of

A, 'sasdefinedin [20].
Step 4: Obtain the non-linear systems of equations
relating parameters Oyj by equating the

coefficients of the characteristic polynomias
obtained in Steps 2 and 3.

Step 5: Obtain inequalities (17).

Step 6: Use the results obtained in Steps 4 and 5 to
implement the Lemma 3.1lin order to find the
fitness function.

Step 7: Employ the Genetic Algorithm with the

fitness function obtained in Step 6 for finding G, .

Step 8: Obtain (ék, E,). The matrices E, are
obtained by elementary column operations on C,
suchthat C, =C,E, =[1, 0, ] k=12...,p

(asin[21]).
Step 9: Substitute the results obtained in

KCkEk :Bkicl)(_GkO"'Gk/l)TkilEk
=[K 0, ] k=12..p

Step 10: Store the first I' columns of the matrix
obtained in step 9 to obtain K.

Using this algorithm avoids direct solution of
systems of nonlinear equations which is
numerically complicated; instead the output
feedback matrix is obtained readily using the fitness
function defined by a search method. The following
examples use the above algorithm to obtain
simultaneous state or output feedback matrix and
the results are compared with those obtained in [18]
and [11].
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4. llustrative examples

The following three examples are given to illustrate
the effectiveness of the presented method. The
results are used to compare the presented method
with the existing methods.

Example 1. Consider the linear controllable
systemsgivenin [18]:

-0.98960 17.4100 96.15
A =| 026480 -0.8512 -11.89|,

0 0 -30
[-97.78
B. — 0 (33)
30

[-0.66070 18.1100 84.34
A,=| 008201 -0.6587 -10.81|,
0 -30

T -272.2
B, (34)

{1 .70200 50.7200 263.50

0.22010 -1.4180 -31.99 |,
0 -30

{85 .09
(35)
~051620 26.9600 178.90
- 068960 -1.2250 -30.38 |,
0 -3
175.6
B,| o (36)
30

The aim is to obtain a state feedback controller
which assigns the eigenvalues inside the region:

Q={seC| -10<real(s)<-03, —40<imag(s) <40} (37)

Similarity transformations are performed to
obtain necessary matrices. By solving the set of
equations (14) and inequalities (17) by using GAs
the following state feedback matrix is obtained:

F =[-0.0010 1.2875 0.7541] (39)

The resulting eigenvalues of the corresponding
closed-loop systems are found to be:

v, ={~0.8830,-4.1185 + 21.8639i,-4.1185 218639 }

v, ={ ~1.9556,-3.2343 + 20.6406i,-3.2343— 20,6406} (39)
v, ={0.3946,-5.0177 + 35.3588i 5.0177 — 35.3588i}

v, ={7.4910,-0.9014 + 36.8502i ~0.9014  36.8502i}

As it can be verified, they are al inside the given
region. It should be noted that the norm of the state
feedback matrix here is 1.4921. The feedback
matrix obtained in [18] is
Fw = [0.50263 4.29837 —0.40365], with the

norm 4.3464; clearly, the norm obtained by our
method is much reduced.

Example 2. Let us now consider the linear
controllable and observable systems given in [18]

for output feedback control:
-4 5 -4
A= 4 -21 -18 |,
-32 -4 345
1 1
B,=|-5 3|, (40)
0 -4
Cl:{o 1 1}
-2 0 3
43 24 -4
A,=-98 33 20|,
49 49 -94
0 1
B,=11 2|, (41)
-3 1
{—4 -8 12}
C2=
8 8 4

Here the aim is to obtain an output feedback
controller which assigns the eigenvalues inside the

region:
Q={seC| -12<red (s)<-1, -35<imag(s)<35} (42)

By using our method incorporating GAs, the
following output feedback matrix is obtained:
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[—1.4559 0.6863 }
= (43)

3.7403 1.9212

The resulting eigenvalues of the corresponding
closed-loop systems are found to be:

v, ={-9.6314, - 2.7994+15.8430i, - 2.7994-15.84301}  (44)
v, ={-10.0264,—4.3940+ 29.5101i, — 4.3940—- 29.5101i}

which again lie inside the prescribed region. It
should be noted that the norm of the output
feedback matrix here is 4.3285. However, the
feedback  matrix  obtained in [18] s

_|~0.7183 14953 | \yith norm 5.4686.
w 4.8755 2.4765

Example 3. In the last comparison, consider the
linear controllable systems givenin [11]:

-0.98960 17.4100 96.15
A =| 026480 -0.8512 -11.89|,

0 0 -30 (45)

[-97.78
B,=| O

| 30
[-0.66070 18.1100 84.34
A,=| 0.08201 -0.6587 -10.81]|,

I 0 -30 (46)
{272 2

[1 7202 50.7200 263.50

0.22010 -1.4180 -31.99 |,

0 -30 (47)
{85 .09

~051620 26.9600 178.90
{—068960 ~1.2250 -30.38 |,
0 -0 | 0
~175.6
B,=| O
30

The aim is to obtain a state feedback controller
which assigns the eigenvalues inside the region:

Q={seC| —4<real(s) <-1,- 20<imag(s) < 20} (49)

By using GAsthe following state feedback matrix
is obtained:

F =[0.0088 0.3788 0.8861] (50)

The resulting eigenvalues of the closed-loop
systems are thus:

v, ={—1.2689,-2.4247 -11.6867i,—2.4247 + 11.6867i}
v, ={—1.9155,-2.6082-13.0053i,-2.6082 + 13.0053}
v, ={-1.6094,-2.8473—-17.5874i,-2.8473+17.5874i}
v, ={-1.5265,-2.5885-17.6341i,-2.5885+17.6341i}

(51)

Once again these are inside the given region. It should
be noted that the norm of the state feedback matrix here
is 0.9637, while the feedback matrix obtained in [11] is
Fruen =[—0.209582-1.373644 1.584912] with

the norm 2.1078.

5. Conclusion

In this paper, by using similarity transformations a
suitable fitness function is obtained which is then
implemented in GAs in order to find state/output
feedback matrices for the simultaneous control of a
collection of linear systems. This method is much
simpler than the methods which employ Riccati
equations [18] and cost functions and
decomposition-based methods [11]. As the
illustrative examples show, the results obtained
have a lesser norm. The ability of GAs to find the
global minimum results in better solutions for
simultaneous control [22]. In general, the merit of
the presented method is the simplicity of the
algorithm, less amount of computational effort, the
insensibility in varying the prescribed region and
the reduction in the norm of feedback matrices
relative to the existing methods. The GAs aways
leads to a feasible solution if the systems under
consideration are al controllable and observable.
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