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Abstract 

In this paper, Genetic Algorithms (GAs) are employed to control simultaneous linear systems in both state and 
output feedback. First, the similarity transformation is applied to obtain parameterized controllers. This requires 
solution of a system of equations and also some non-linear inequalities. GAs are used to solve these equations and 
inequalities. Therefore, the paper presents an analytical method for finding parameterized controllers and employs 
a numerical method to enhance the solution. Three numerical examples are presented to illustrate the effectiveness 
of the method and to compare the results with previous results. 
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1. Introduction 

The problem of simultaneous stabilization of time 
invariant linear systems 
 
      pktuBtxAtx kkkkk ,,2,1,    
   k k ky t C x t                                                (1)

 
 
is to find a state feedback controller matrix F (in 
case of ICk  ) with the feedback law  tFxu kk   

or to find a output feedback controller matrix K  
with the feedback law  tKyu kk  , such that the 

eigenvalues of all closed loop systems 

FBAA kkkc 
 

or
 kkkkc KCBAA 

 
for all 

1, 2, ,k p   lie in the left hand side of the 

complex plane in the prescribed bounded region.  
Investigation into this problem was first 

introduced by Saeks and Murray [1], based on the 
work of Birdwell et al [2]. In the case of two plants, 
the simultaneous stabilization problem reduces to a 
well-known problem [3] and a proper stable 
controller is found to stabilize both plants. 
However, simultaneous stabilization of more than 
two plants, in general, is difficult [4]. An analytical 
solution to the simultaneous stabilization problem is NP-
hard to find [5] and so no analytical algorithm can be 
devised to lead to a simple or rapid solution. 
Furthermore, the numerical methods are replaced instead 
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of the analytical methods. Such approaches had 
focus in two main areas. The first deals with the 
solution to the simultaneous stabilization problem 
itself, in which the solution to the problem has been 
tackled from a number of different directions, 
including polynomials [6], minimum phase [7], 
system inversion [8], optimization-based [9], 
similarity transformation [10] and decomposition-
based [11]. The second deals with performance 
improvement for the simultaneous stabilization, or 
simultaneous optimal control, in which nonlinear 
optimization algorithms have been proposed [12]. 

Simultaneous stabilization problem of a finite 
collection of distinct systems under a single 
feedback controller in many engineering problems 
is important, such as control of aircraft [13], 
particularly when different conditions are produced 
by dynamical models. A single stabilization control 
provides system simplicity and reliability. For 
example, it could be used as a backup 
reconfigurable control under actuation system 
damage or failure [11]. 

In [13], a nonlinear state feedback controller 
which simultaneously stabilizes a collection of 
single input systems is presented. In [14], necessary 
and sufficient conditions embedded in the 
solvability of a constrained optimization problem 
for the existence of controllers to simultaneously 
stabilize a collection of single input–multi output 
systems are obtained. In [15], the method of [14] 
was modified for both output and state feedback. In 
[16] the problem was considered only for single 
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input systems. In [17] the optimal simultaneous 
state feedback controller by numerical solution of a 
minimizing problem is obtained. In [18] an 
auxiliary minimization problem for computing an 
approximate solution instead of original problem is 
solved.  

In these papers, an enormous amount of 
computation is needed to find a simultaneous 
controller, usually resulting in a big norm when 
intelligent methods are not implemented. One of the 
intelligent methods used is GAs. This method was 
first applied for assigning eigenvalues in state 
feedback control [19]. Artificial intelligence, like 
GAs is beneficial when analytical methods fail. The 
GAs consider all the constraints on the controller 
matrix simultaneously and obtain local optimal 
points [19]. GAs have the method of global search 
in natural selection of genes. They act on existing 
individual population that has been selected 
randomly in the beginning of the search in order to 
improve the solution.  

In this paper, a new method for computing 
simultaneous state feedback and output feedback 
for eigenvalue assignment of a collection of linear 
systems in a region is presented. A set of equations 
and inequalities are obtained and then are 
transformed to an optimization problem. Enormous 
computational power of GAs is implemented for 
solving this kind of optimization problem. Here, 
first by using GAs and an objective function 
depending on eigenvalues, an optimal problem is 
solved for finding a controller matrix. A fitness 
function satisfying the optimal value of the set of 
equations and the set of inequalities is introduced. 
Then, by adjusting other parameters of GAs the 
solution is obtained. Comparing our work with 
previous methods, results in simpler computations 
using an intelligent method of GAs. Indeed, using 
Riccati equations [18], cost functions and 
decomposition-based methods [11] requires very 
complicated computations, whereas using the 
algorithm presented here is much more straight 
forward.  

The structure of the paper is as follows. In the 
next section, formulation of the problem is 
presented. Also, similarity transformations for 
finding state and output feedback matrices are 
introduced. In the third section, a method based on 
optimization for solving simultaneous system of 
linear equations and non-linear inequalities is 
introduced. Also, the resulting method is 
summarized in an algorithm. Finally, some 
examples are illustrated in order to show the 
effectiveness of the presented method and a 
comparison is made with the previous results in 
[18] and [11]. 

 

2. Problem formulation 

Consider a set of p  time invariant systems of (1), 

where n
k Rx  is the state vector, m

k Ru  is 

input vector and r
k Ry  is the output vector of 

k th system. kkk CBA ,, are constant matrices of 

dimensions mnnn  , and nr   respectively 

with the following assumptions: 

1. ),( kk BA  are controllable and ),( kk CA are 

observable. 

2. kB and
 kC have full row ranks. 

Now consider
 

FBAA kkkc  , closed-loop 

systems with the state feedback control 

laws kk Fxu  or kkkkc KCBAA   closed-

loop systems with the output feedback control 

laws kk Kyu  . The objective is to find a state or 

output feedback matrix for all the p systems which 

satisfies the above assumptions, such that all the 
roots of the characteristic equations of each closed-
loop system lie in a prescribed region. Here, it is 
assumed that the roots lie inside a rectangular 
region defined as: 
 

{ ( ) , ( ) }s C real s imag s             (2) 
 
where RR   , and R . This region is 

considered symmetric with respect to the real axis 
in order to obtain a real state feedback matrix 
F and a real state feedback matrix K  [18]. A brief 
review of the paper [20] is recalled for the 
computation of the state and output feedback 
matrix.  

2.1. Similarity Transformation Method 

An existing and analytical method of finding a 
state and an output feedback matrix by similarity 
transformations is given in [21]. For computing 

state feedback matrix kF  and output feedback 

matrix kK for all the p systems, first the 

augmented matrix ],,[ nkk IAB  is transformed to 

vector companion form ],
~

,
~

[ 1
kkk TAB by 

elementary similarity operations [20]. Then state 
feedback and output feedback matrix can be found 
from: 
 

1 1
0 0( )k k k k kF B G G T

   
                            (3) 

 1
0

1
0 )(   kkkkkk TGGBCK                           (4)
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Where, 00 , kk GB and 1
kT are block matrices with 

appropriate dimensions and are selected from 

vector companion form ],
~

,
~

[ 1
kkk TAB  as [20]: 

 











 mmn

k
k

B
B

,

0

0
~

 











 mmnmn

k
k I

G
A

,

0

0,
~

                                         (5) 

 
Let the parametric closed-loop matrix of each 

system with the desired eigenvalues be k
~

in the 

following form: 
 

11 12 1

21 22 2

,

1 2

,
, 0

k k k n

k k k k n
k k

n m n m m

km km kmn

g g g

G g g g
where G

I

g g g


 

 

 
            
  







(6) 

 
In which kG is a parametric matrix of dimension 

nm  obtained from first m rows of k
~

. 

The closed-loop system eigenvalues of kcA , can 

be located in a prescribed spectrum by k
~

. For this 

reason, it is sufficient to have
 0)

~
det(  Ikk  , 

which leads to the characteristic polynomial of k
~

 

as: 
 

det( ) ( )k k kn kI P    
                              (7)

 

 
where 
 

)()1()( )1(
1

1 knknk
n
kk

n
k

n
kkn cccP  

   (8) 
 
is the characteristic polynomial of the closed-loop 
system. 

Since it is necessary that all the roots of the 
characteristic polynomial lie in the 

spectrum },,,{ 21 knkkk   , it is clear that: 
 

1 2( ) ( 1) ( ) ( ) ( )n
kn k k k k k k knP               (9) 

 
By equating the above equalities, 

, ( 1,2, , )kic i n   can be computed [20] as: 

)()1(

)(

)(

1

,1,2

11


















n

i
ki

n
kn

kj

n

jiji kik

n

i kik

c

c

c







                                     (10) 

 
If ),,2,1(, niki   are known, then 

knkk ccc ,,, 21   can be found. Now, with direct 

computation of )()
~

det( kknkk PI    

parametrically and with having coefficients of 
characteristic polynomial in equation (10), a set of 
system of non-linear equations results, as follows: 
 

knkmnkmkmnkkknkkkkn

kkmnkmkmnkkknkkkk

kkmnkmkmnkkknkkkk

cgggggggggf

cgggggggggf

cgggggggggf






),,,,,,,,,,,,(

),,,,,,,,,,,,(

),,,,,,,,,,,,(

212222111211

22122221112112

12122221112111







 (11)

 

 
where, ),,2,1,,,2,1(, njmigkij    are 

the elements of kG and ),2,1(, nif ki   are 

parametric non-linear polynomials that are obtained 

by computing )
~

det( Ikk   . The set of 

equations (11) is a set of non-linear system with 
n equations and nm unknowns. By arbitrary 

selection of )1(  mnN  unknowns this system 

can be solved. 

2.2. Finding a simultaneous state feedback matrix  

In this section, we introduce a new method for 
computing a simultaneous state feedback by 
similarity transformations for a collection of 
controllable systems. Consider the given systems 
(1). For the systems to have a simultaneous state 
feedback matrix, the equation (3) must be changed 
to: 
 

1 1
0 0( ) , 1, 2, ,k k k kF B G G T for each k p

       
(12) 

 
Here, p equations are obtained and by equating 

them together other equations are derived. For 
example, if ik   and then jk  is considered, it 

follows that: 
 

1 1 1 1
0 0 0 0( ) ( )j j j j i i i iF B G G T B G G T 
             (13) 

 
From which 
 

1 1 1 1
0 0 0 0 0 0i i j j j i i i j j j iG B B G T T G B B G T T 

      (14) 
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Here, unknowns of the equations are  ji GG , . 

The remaining matrices are computed from 

transformation of pairs ),( ii BA  and 

),( jj BA into vector companion form as 

mentioned before. Hence, the left hand side of (14) 
is an unknown matrix of dimensions nm and the 
right hand side is a known matrix of dimensions 

nm . Now, by equating the corresponding 
elements of these matrices, mn equations with 

mn2  unknowns are obtained. Finally, by equating 
the right hand side of (12) term by term for each 

1i , say, and pj ,...,2 , mnp )1(   equations 

in the form of (14), with mnp unknowns are 

derived. 
Solution of these equations results in a state 

feedback matrix, but does not guarantee the 
stability of the systems under consideration. For 
this reason, other constraints must be considered 
such that the systems are stabilized. In order to 
stabilize the systems, the defined region in (2) must 
lie in the left hand side of the complex plane, so 
that the eigenvalues of systems (1) lie inside this 
region. The equations of (11) guarantee eigenvalue 
assignment of systems (1) in a prescribed spectrum. 
Although the new method does not allocate the 
eigenvalues exactly, it can assign the eigenvalues in 
a prescribed rectangular symmetric bounded region 
with respect to the real axis. Hence, upper bounds 
and lower bounds for the left hand side of (11) are 

considered where: maxic are the upper bounds and 

),,2,1(,min nici  are the lower bounds as 

given below: 
 

)()1(

)()1(

)(

maxmax

2
max

2
max2

maxmax1

nn
nc

andnc

nc















)()1(

)()1(

)(

minmin

2
min

2
min2

minmin1

nn
nc

nc

nc














                                      (15) 

 
where max  is set to  and min is set to  as 

introduced in (2). In this case, equations (10) are 
transformed to the following inequalities: 
 

nnkmnkmkmnkkknkkkknn

kmnkmkmnkkknkkkk

kmnkmkmnkkknkkkk

cgggggggggfc

cgggggggggfc

cgggggggggfc

max212222111211min

max22122221112112min2

max12122221112111min1

),,,,,,,,,,,,(

),,,,,,,,,,,,(

),,,,,,,,,,,,(













 (16)

 

These inequalities can be rewritten in the form: 
 

0),,,,,,,,,,,,(

0),,,,,,,,,,,,(

0),,,,,,,,,,,,(

0),,,,,,,,,,,,(

0),,,,,,,,,,,,(

0),,,,,,,,,,,,(

min212222111211

min22122221112112

min12122221112111

max212222111211

max22122221112112

max12122221112111
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
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nkmnkmkmnkkknkkkkn
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cgggggggggf

cgggggggggf

cgggggggggf

cgggggggggf

cgggggggggf
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









 (17)

 

 
where now, np2  inequalities with nmp  

unknowns are obtained. By using the set of 
equalities (14) and the set of inequalities (17) and 
by solving them simultaneously, a vector 

nmpRg   whose elements are defined in (17) can 

be found such that a simultaneous state feedback 
matrix which stabilizes systems (1) is obtained.  

2.3. Finding a simultaneous output feedback matrix  

In this section, a new method for computing a 
simultaneous output feedback by similarity 
transformations for a collection of controllable 
systems is introduced. Consider the given systems 
(1). For the systems to have a simultaneous output 
feedback, equation (4) should be changed to:  

 1 1
0 0( ) , 1, 2, ,k k k k kKC B G G T for each k p

       (18)
 

 
The left hand sides of (18) are not equal for each 

of the p  equations. Therefore, the right hand sides 

of (18) for each of the p  equations cannot be 

equated as it was done in the previous section. To 
overcome this problem, elementary similarity 

operations on the pairs ),( nk IC  are performed in 

order to obtain ),
~

( kk EC  such that [21]: 
 

,0 , 1, 2, ,k k k r r n rC C E I k p    
 

   (19)
 

 
Multiplying (18) by kE on the right hand side 

yields: 
 

1 1
0 0

,

( )

           0 , 1, 2, ,

k k k k k k k

r n r

KC E B G G T E

K k p


 



  

        (20)
 

 
As a result, now the p  middle relations of (20) 

can be equated to each other. For example, if ik   
and then jk  is considered, the following 

equations will be derived: 
 

 rnriiiiijjjjj KETGGBETGGB 
  ,

1
0

1
0

1
0

1
0 0)()(   

 (21) 
 
From which: 
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iijjjjiiiijjjjii TEETGBBGTEETGBBG 11
0

1
000

111
00

  
  (22) 

 
Now, the left hand side is an unknown matrix of 

dimensions nm and the right hand side is a 
known matrix of dimensions nm . Hence, by 
equating the corresponding elements, mn equations 

with mn2  unknowns are obtained. Finally, taking 

pk ,,2,1   results in mnp )1(   equations 

and as in (22) with mnp unknowns. Solution of 

these equations results in an output feedback 
matrix, but does not guarantee the stability of 
controlled systems as before.  However, for 
stabilizing the system the following approach is 
devised. 

Let all the n  eigenvalues of p  systems in (1) be 

located in region (2) in the form: 

 
1 1 2 2{ , , , }

1,2, ,
k k k k k kn kni i i

k p

         





   (23) 

 
Here, njkjkj ,,2,1,,   are respectively 

real parts and imaginary parts of corresponding 
eigenvalues of the closed-loop systems of (1). For 
eigenvalues in (23) to lay in the region (2) the 
following inequalities for pk ,,2,1   must be 

satisfied: 
 

nnnsh

nnnrh

nnnjh

nih

ksks

krkr

kjkj

kiki

4,,23,130

3,,22,120

2,,2,10

,,2,10



















  (24) 

 
In what follows a method for solving 

simultaneously the set of equations (14) and 
inequalities (17) for finding a state feedback matrix 
or for solving simultaneously the set of equations 
(22) and inequalities (24) for finding an output 
feedback matrix is presented. 

3. A method of solution 

For solving systems of equations (14) and the 
systems of inequalities (17) or systems of equations 
(22) and the systems of inequalities (24) 
simultaneously, the following lemma facilitates the 
solution. 
 
Lemma 3.1. The two systems I  and II introduced 
below are equivalent: 
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( ) 0

( ) 0

( ) 0

k

l

k

l

j x

j x

j x
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h x

h x

h x

j x j x j x
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h x
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h x

h x


 




 
 


 
   


 
















        (25)

 

 
if and only if the object function in system II  is 
zero for the optimal point. 
 
Proof: Let 
 

 0)(,,0)(,0)( 21  xhxhxhRxX l
n 

 
 (26) 

 
If the system I  has a feasible solution 0x , then 
 

0 1 0 2 0 0( ) ( ) ( ) 0n
kx R j x j x j x           (27) 

 
1 0 2 0 0( ) 0, ( ) 0, , ( ) 0lh x h x h x  

       
(28) 

 
From (28) it results that Xx 0  and from (27) 
 

0)()()( 0
2

0
2
20

2
1  xjxjxj k

           
(29) 

 
But since the object function of system II  is 

non-negative, it takes its minimal value at zero, 

hence, 0x  is a feasible solution for system II . 

Conversely, if the optimized solution of system 
II  is zero, then the system I  also has a solution 
and this completes the proof. 

For solving simultaneously the system of 
equations (14) and the inequalities (17) or the 
system of equations (22) and the inequalities (24), 
the lemma 3.1 may be used. For this purpose, 

)(xJi  in system II must be replaced by the 

equations introduced in (14) or in (22), and also the 
constraints of system II  must be replaced by the 
inequalities (17) or (24). Then the fitness function 
is obtained by linear combination of object function 
and constraints of system II  which can be solved 
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by GAs. Here the number of equations and 
inequalities are mnpk )1(   and npl 4 , 

respectively. 

3.1. Selecting proper fitness function 

For each p  system defined in (1), the 

eigenvalues can be assigned in a bounded region or 
in a prescribed spectrum [21]. For assigning the 
eigenvalues of a collection of controllable systems 
in a prescribed region for simultaneous 
stabilization, the systems of inequalities (17) or (24) 
must be satisfied according to state or output 
feedback control.  

In using GAs for solving the set of equations (14) 
and inequalities (17) or the set of equations (22) 
and inequalities (24), it is necessary to apply a 
proper fitness function. To simplify the fitness 
function, a vector H is defined in the form: 
 

),,,,,,,,,,,,( )4(21)4(22221)4(11211 npppnn hhhhhhhhhH 
  0)(,,0)(,0)( 21  xhxhxhRxX l

n 
 (30) 

 
where nipkhki 4,,2,1,,,2,1,    are the 

constraints obtained from

 

system II , and

 
 

)1)((
1

4

1

 
 

p

k

n

i
kihsignS                               (31) 

 
is defined in order to transform the inequalities of 
system II  into a non-negative number. In order to 
satisfy equation (31) considering condition (2) it is 
necessary that S  be zero. Fitness function is 
obtained from nonlinear combination of (14) or 
(22) with (31) in the form: 
 

SgjgjgjY mnp   )()()( 2
)1(

2
2

2
1   (32) 

 
where sj , mnps )1(,,2,1    are equations 

obtained from (17) or (24). This fitness function is 
implemented in GAs to solve the optimization 
problem in mind. The feasible solution 
corresponding to fitness function is a vector 

nmpRg  whose elements are the same as the 

elements of kG matrix. By substituting elements 

of kG matrix in (12) a state feedback matrix or in 

(18) an output feedback matrix is obtained for 
simultaneous control. The above results can be 
summarized in the following algorithm. 

3.2. The Algorithm  

Object: To obtain simultaneous output feedback 
matrix K, for which the eigenvalues of the closed-
loop systems G’s are located in a prescribed 
spectrum. 
Input: The controllable and observable system 
matrices (

kkk CBA ,, ) and the eigenvalue spectrums 

pkiii knknkkkkk ,,2,1},,,{ 2211     

where complex eigenvalues are in complex 
conjugate pairs.  
Output: The output feedback matrix K , such that 
the eigenvalues of each closed-loop system fall into 
the prescribed spectrum.  
Step 1: Employ the algorithm given by [20] to 

obtain 0
1
0 , kk GB  and 1

kT for pk ,...,2,1  . 

Step 2: Obtain the coefficients of the characteristic 
polynomials whose roots are the same as the    
desired eigenvalue spectrums 

pkiii knknkkkkk ,,2,1},,,{ 2211    . 

Step 3: Obtain the characteristic polynomials of 

kA
~

’s as defined in [20].  

Step 4: Obtain the non-linear systems of equations 

relating parameters kijg , by equating the 

coefficients of the characteristic polynomials 
obtained in Steps 2 and 3.  
Step 5: Obtain inequalities (17). 
Step 6: Use the results obtained in Steps 4 and 5 to 
implement the Lemma 3.1in order to find the 
fitness function. 
Step 7: Employ the Genetic Algorithm with the 

fitness function obtained in Step 6 for finding kG . 

Step 8: Obtain ),
~

( kk EC .
 
The matrices kE  are 

obtained by elementary column operations on kC  

such that 
,0 , 1,2, ,k k k r r n rC C E I k p    

   

(as in [21]). 
Step 9: Substitute the results obtained in 
 

1 1
0 0

,

( )

           0 , 1, 2, ,

k k k k k k k

r n r

KC E B G G T E

K k p


 



  

    
 

 
Step 10: Store the first r  columns of the matrix 
obtained in step 9 to obtain K. 

Using this algorithm avoids direct solution of 
systems of nonlinear equations which is 
numerically complicated; instead the output 
feedback matrix is obtained readily using the fitness 
function defined by a search method. The following 
examples use the above algorithm to obtain 
simultaneous state or output feedback matrix and 
the results are compared with those obtained in [18] 
and [11]. 
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4. Illustrative examples 

The following three examples are given to illustrate 
the effectiveness of the presented method. The 
results are used to compare the presented method 
with the existing methods. 
 
Example 1. Consider the linear controllable 
systems given in [18]: 
 

1

1

0.98960 17.4100 96.15

0.26480 0.8512 11.89 ,

0 0 30

97.78

0

30

A

B

 
    
  
 
   
  

      (33) 

 
2

2

0.66070 18.1100 84.34

0.08201 0.6587 10.81 ,

0 0 30

272.2

0

30

A

B

 
    
  
 
   
  

     (34) 

 
3

3

1.70200 50.7200 263.50

0.22010 1.4180 31.99 ,

0 0 30

85.09

0

30

A

B

 
    
  
 
   
  

    (35) 

 
4

4

0.51620 26.9600 178.90

0.68960 1.2250 30.38 ,

0 0 30

175.6

0

30

A

B

 
     
  
 
   
  

     (36) 

      

 
The aim is to obtain a state feedback controller 

which assigns the eigenvalues inside the region: 
 

}40)(40,3.0)(10{  simagsrealCs (37) 
 

Similarity transformations are performed to 
obtain necessary matrices. By solving the set of 
equations (14) and inequalities (17) by using GAs 
the following state feedback matrix is obtained: 
  

 7541.02875.10010.0F                  (38) 
 

The resulting eigenvalues of the corresponding 
closed-loop systems are found to be: 
 

}8502.369014.0,8502.369014.0,4910.7{

}3588.350177.5,3588.350177.5,3946.0{

}6406.202343.3,6406.202343.3,9556.1{

}8639.211185.4,8639.211185.4,8830.0{

4

3

2

1

iiv

iiv

iiv

iiv






(39) 

 
As it can be verified, they are all inside the given 

region. It should be noted that the norm of the state 
feedback matrix here is 1.4921. The feedback 
matrix obtained in [18] is

  40365.029837.450263.0 WuF , with the 

norm 4.3464; clearly, the norm obtained by our 
method is much reduced.  
 
Example 2. Let us now consider the linear 
controllable and observable systems given in [18] 
for output feedback control:  
 

1

1

1

4 5 4

4 21 18 ,

32 4 34.5

1 1

5 3 ,

0 4

0 1 1

2 0 3

A

B

C

  
    
   
 
   
  
 

   

                              (40) 

 

2

2

43 24 4

98 33 20 ,

49 49 94

0 1

1 2 ,

3 1

4 8 12
2

8 8 4

A

B

C

  
   
  
 
   
  
  

  
 

(41) 

 
Here the aim is to obtain an output feedback 

controller which assigns the eigenvalues inside the 
region: 
 

{ 12 ( ) 1 , 35 ( ) 35}s C real s imag s         
 (42) 

 
By using our method incorporating GAs, the 

following output feedback matrix is obtained: 
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









9212.17403.3

6863.04559.1
K                           (43) 

 
The resulting eigenvalues of the corresponding 

closed-loop systems are found to be: 
 

}5101.293940.4,5101.293940.4,0264.10{

}8430.157994.2,8430.157994.2,6314.9{

2

1

iiv

iiv


   (44)  

 
which again lie inside the prescribed region. It 
should be noted that the norm of the output 
feedback matrix here is 4.3285. However, the 
feedback matrix obtained in [18] is 











4765.28755.4

4953.17183.0
WuK  with norm

 

5.4686.  

 
Example 3. In the last comparison, consider the 
linear controllable systems given in [11]:  
 

1

1

0.98960 17.4100 96.15

0.26480 0.8512 11.89 ,

0 0 30

97.78

0

30

A

B

 
    
  
 
   
  

               (45)

 

2

2

0.66070 18.1100 84.34

0.08201 0.6587 10.81 ,

0 0 30

272.2

0

30

A

B

 
    
  
 
   
  

           (46) 

 

3

3

1.7202 50.7200 263.50

0.22010 1.4180 31.99 ,

0 0 30

85.09

0

30

A

B

 
    
  
 
   
  

         (47) 

 

4

4

0.51620 26.9600 178.90

0.68960 1.2250 30.38 ,

0 0 30

175.6

0

30

A

B

 
     
  
 

   
  

 (48) 

 
The aim is to obtain a state feedback controller 

which assigns the eigenvalues inside the region: 
 

}20)(20,1)(4{  simagsrealCs  (49) 
 

By using GAs the following state feedback matrix 
is obtained: 
 

 8861.03788.00088.0F                     (50) 
 

The resulting eigenvalues of the closed-loop 
systems are thus: 
 

}6341.175885.2,6341.175885.2,5265.1{

}5874.178473.2,5874.178473.2,6094.1{

}0053.136082.2,0053.136082.2,9155.1{

}6867.114247.2,6867.114247.2,2689.1{

4

3

2

1

iiv

iiv

iiv

iiv






      (51) 

 
Once again these are inside the given region. It should 

be noted that the norm of the state feedback matrix here 
is 0.9637, while the feedback matrix obtained in [11] is

 
[ 0.209582 1.373644 1.584912]RubenF     with 

the norm 2.1078.  

5. Conclusion 

In this paper, by using similarity transformations a 
suitable fitness function is obtained which is then 
implemented in GAs in order to find state/output 
feedback matrices for the simultaneous control of a 
collection of linear systems. This method is much 
simpler than the methods which employ Riccati 
equations [18] and cost functions and 
decomposition-based methods [11]. As the 
illustrative examples show, the results obtained 
have a lesser norm. The ability of GAs to find the 
global minimum results in better solutions for 
simultaneous control [22]. In general, the merit of 
the presented method is the simplicity of the 
algorithm, less amount of computational effort, the 
insensibility in varying the prescribed region and 
the reduction in the norm of feedback matrices 
relative to the existing methods. The GAs always 
leads to a feasible solution if the systems under 
consideration are all controllable and observable.  
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