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Abstract 

Coupled �-structures are introduced, and its application is discussed in BCK/BCI- algebras. The notions of a 
coupled �-subalgerba, a coupled �-ideal and a coupled �C- ideal are introduced, and their relations are 
investigated. Characterizations of a coupled �-ideal and a coupled �C-ideal are discussed. Conditions for a 
coupled �-subalgerba to be a coupled �-ideal are considered. 
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1. Introduction 

BCK-algebras entered into mathematics in 1966 
through the work of Imai and Iséki [1], and have 
been applied to many branches of mathematics, 
such as group theory, functional analysis, 
probability theory and topology. Such algebras 
generalize Boolean rings as well as Boolean D-
posets (= MV -algebras). Also, Iséki introduced the 
notion of a BCI-algebra which is a generalization of 
a BCK-algerba (see [2]). Several properties on 
BCK/BCI- algebras are investigated in the papers 
[3-9]. There is a deep relation between BCK/BCI-
algebras and posets. 

A (crisp) set A in a universe X can be defined in 
the form of its characteristic function µ�: X	 → {0,1} 
yielding the value 1 for elements belonging to the 
set A and the value 0 for elements excluded from 
the set A. So far most of the generalization of the 
crisp set have been conducted on the unit interval 
[0, 1] and they are consistent with the asymmetry 
observation. In other words, the generalization of 
the crisp set to fuzzy sets relied on spreading 
positive information that fit the crisp point {1} into 
the interval [0, 1]. Because no negative meaning of 
information is suggested, we now feel a need to 
deal with negative information. To do so, we also 
feel a need to supply mathematical tool. To attain 
such object, Jun et al. [10] introduced a new 
function which is called negative-valued function, 
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and constructed �-structures. They discussed �-
subalgebras and �-ideals in BCK/BCI-algebras. Jun 
et al. [11] applied the �-structure to closed ideals in 
BCH-algebras. Also, Jun et al. [12] discuss ideal 
theory in BCK/BCI-algebras based on soft sets and 
�-structures. 

In this paper, we introduce the notion of coupled 
�-structures, and discuss its application in 
BCK/BCI-algebras. The notions of a coupled �-
subalgerba, a coupled �-ideal are introduced and a 
coupled �C-ideal, and their relations are 
investigated. We discuss characterizations of a 
coupled �-ideal and a coupled �C-ideal. We 
provide conditions for a coupled �-subalgerba to be 
a coupled �-ideal. 

2. Preliminaries 

Let K(τ) be the class of all algebras of type τ = (2, 

0). By a BCI-algebra we mean a system X:= (X,*, 

0) ∈ K(τ) in which the following axioms hold: 
 

(a1) ((x * y) * (x * z)) * (z * y) = 0, 
 

(a2) (x * (x * y)) * y = 0, 
 

(a3) x * x = 0, 
 

(a4) x * y = y * x = 0 ⇒ x = y, 
 
for all x, y, z ∈ X. We can define a partial ordering ≤ 

by 
 

(∀x, y ∈ X) (x≤y ⇔ x * y = 0). 
 
In a BCK/BCI-algebra X, the following hold: 



 
 

IJST (2013) 37A2: 133-140                                                                                                                                          134 
 
(b1) x * 0 = x, 

(b2) (x * y) * z = (x * z) * y, 

for all x, y, z∈X. If a BCI-algebra X satisfies 0 * x = 
0 for all x∈X, then we say that X is a BCK-algebra. 
A BCK-algebra X is said to be commutative if it 
satisfies the following equality: 
 
(∀x, y∈X) (x∇y = y∇x)                                      (2.1) 
 
where x∇y = x* (x* y). 

A non-empty subset S of a BCK/BCI-algebra X is 
called a subalgebra of X if x*y∈S for all �, � ∈ �. A 
subset A of a BCK/BCI-algebra X is called an ideal 

of X if it satisfies: 
(I1) 0∈A, 

(I2) (∀x, y∈X) (x* y∈A, y∈A⇒ x∈A). 
A subset A of a BCK-algebra X is called a 

commutative ideal of X (see [9]) if it satisfies (I1) 
and 

 
(∀x, y, z∈X) ((x * y) * z∈A, z∈A ⇒ x * (y∇x)∈A).                                                          
(2.2) 
 

Note that any commutative ideal in a BCK-
algebra is an ideal, but the converse is not valid (see 
[9]). We refer the reader to the books [13] and [14] 
for further information regarding BCK/BCI-
algebras. 

For any family {��	│�	 ∈ 	�} of real numbers, we 
define 

 

 ⋁{ ��│�	 ∈ 	�} ∶= 	 �max{��	|	�	 ∈ 	�}	if	Λ	is	$inite,
sup{��	|	�	 ∈ 	�}	otherwise. / 

 

˄{��│�	 ∈ 	�} ∶= 	 �min{��	|	�	 ∈ 	�} 	if	Λ	is	$inite,
inf{��	|	�	 ∈ 	�} 	otherwise. / 

 
Denote by F(X, [-1, 0]) the collection of functions 

from a set X to [-1, 0]. We say that an element of 
F(X, [-1, 0]) is a negative-valued function from X to 
[-1, 0] (briefly, �-function on X). By an �-structure 

we mean an ordered pair (X, f) of X and an �-
function f on X. We define an order relation “≪” on 
[-1, 0]×[-1, 0] as follows: 
 
3∀345, 657, 348, 687 ∈ 9−1,0; × 9−1,0;7<345, 657

≪ 348, 687 ⇔ 45 ≤ 48, 65 ≥ 68?. 

3. Coupled �-structures applied to subalgebras 

and ideals in BCK/BCI-algebras 

Definition 3.1. A coupled �-structure C in a 
nonempty set X is an object of the form 
 

∁	= {〈�; B∁, C∁〉 ∶ � ∈ D} 
 
where	B∁ and C∁ are �-functions on X such that 
−1 ≤ B∁3�7 + C∁3�7 ≤ 0 for all x∈X. 

A coupled �-structure ∁	= {〈�; B∁, C∁〉 ∶ � ∈ D} 

in X can be identified to an ordered pair (B∁, C∁) in 
F(X, [-1, 0])× F(X, [-1, 0]). For the sake of 
simplicity, we shall use the notation ∁=(B∁, C∁) 
instead of ∁	= {〈�; B∁, C∁〉 ∶ � ∈ D}. 

For a coupled �-structure ∁=(B∁, C∁) in X and t, 

s∈[-1, 0] with G + H ≥ −1, the set 
 
I{3B∁, C∁7; 3G, H7} = {� ∈ D	│B∁3�7 ≤ G, 	C∁3�7 ≥ H}	 

 
is called an �(t, s)-level set of ∁=(B∁, C∁). An �(t, t)-
level set of ∁=(B∁, C∁) is called an �-level set of 
∁=(B∁, C∁). 
 
Definition 3.2. A coupled �-structure ∁=(B∁, C∁) in 
a BCK/BCI-algebra X is called a coupled �-

subalgebra of X if it satisfies: 
 
B∁3� ∗ �7 ≤ ⋁{ B∁3�7, B∁3�7}	and	C∁(� ∗ �) ≥
	⋀{C∁ (�), C∁(�)}                                                (3.1) 
 
for all x, y∈X. 

 

Example 3.3. Let D = {0, �, M, N} be a BCK-algebra 
with the following Cayley Table: 
 

* 0

0 0 0 0 0

0 0

0

0

a b c

a a a

b b a b

c c c c

 

 
Let ∁=(B∁, C∁) be a coupled �-structure in X 

defined by 
 
∁= {〈0; −0.6, −0.2〉,〈�; −0.6, −0.2〉,〈M; −0.4, −0.5〉, 

													〈c; −0.6, −0.2〉}. 
 
Then ∁=(B∁, C∁) is a coupled �-subalgebra of X. 

 

Proposition 3.4. Every coupled �-subalgebra 

∁=(B∁, C∁) of a BCK/BCI-algebra X satisfies the 

inequalities B∁(0) ≤ B∁(�) and C∁(0) ≥ C∁(�) for 

all x∈X. 

 

Proof: For any x, y∈X, we have 
 
B∁(0) = B∁(� ∗ �) ≤ ⋁{B∁(�), B∁(�)} = B∁(�),  
																								C∁(0) = C∁(� ∗ �) ≥
⋀{C∁(�), C∁(�)} = C∁(�).  
 
This completes the proof. 

Using the notion of �(t, s)-level sets, we discuss a 
characterization of a coupled �-subalgebra of a 
BCK/BCI-algebra X. Although it can be deduced 
from the so-called transfer principle for fuzzy sets 
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described for BCI/BCK-algebras (see [7, 8]), we 
provide its detailed proof for the sake of readers. 

 
Theorem 3.5. A coupled �-structure ∁=(B∁, C∁) in a 

BCK/BCI-algebra X is a coupled �-subalgebra of X 

if and only if the nonempty �(t, s)-level set 

I{(B∁, C∁); (G, H)} is a subalgebra of X for all t, s∈[-
1, 0] with t + s ≥ −1. 
 

Proof: Assume that ∁=(B∁, C∁) is a coupled �-
subalgebra of a BCK/BCI-algebra X. Let t, s∈[-1, 0] 
with t + s ≥ −1 and �, � ∈ I{(B∁, C∁); (G, H)}. Then 
B∁(�) ≤ G, B∁(�) ≤ G, C∁(�) ≥ H, �TU	C∁(�) ≥ H. It 
follows from (3.1) that 
 
B∁(� ∗ �) ≤ ⋁{ B∁(�), B∁(�)} ≤ G	and	C∁(� ∗ �) ≥
	⋀{C∁ (�), C∁(�)} ≥ H  
 
so that	� ∗ � ∈ I{(B∁, C∁); (G, H)}. Hence the 
nonempty �(t, s)-level set I{(B∁, C∁); (G, H)} is a 
subalgebra of X for all G, H ∈ [−1,0] with G + H ≥
−1. 

Conversely, suppose that the nonempty �(t, s)-
level set	I{(B∁, C∁); (G, H)} is a subalgebra of a 
BCK/BCI-algebra X for all G, H ∈ [−1,0] with 
G + H ≥ −1. 

Let x,y∈X be such that ∁(�) = (GV, HV) and 
∁(�) = (GW, HW) that is, B∁(�) = GV, C∁(�) =
HV , B∁(�) = GW	and	C∁(�) = HW  with −1 ≤ GV + HV  
and −1 ≤ GW + HW . Then � ∈ I{(B∁, C∁); (GV, HV)} 

and � ∈ I{(B∁, C∁); <GW, HW?}. 

We may assume that (GV, HV) ≪ <GW, HW?	without 
loss of generality. 
Then 
 

I{(B∁, C∁); (GV, HV)} ⊆ IY(B∁, C∁); <GW , HW?Z, 
 
and so	�, � ∈ I{(B∁, C∁); <GW , HW?}. Since 

IY(B∁, C∁); <GW, HW?Z is a subalgebra of X, it follows 

that � ∗ � ∈ IY(B∁, C∁); <GW, HW?Z so that 
 
B∁(� ∗ �) ≤ GW = ⋁{ B∁(�), B∁(�)}	and	C∁(� ∗ �) ≥
HW = ⋀{ C∁(�), C∁(�)}  
 
Therefore ∁= (B∁, C∁} in X is a coupled �-
subalgebra of X. 

 

Definition 3.6. A coupled �-structure ∁= (B∁, C∁) 
in a BCK/BCI-algebra X is called a coupled �-ideal 

of X if it satisfies. 
 

(c1) B∁(0) ≤ B∁(�)	and	C∁(0) ≥ C∁(�), 
(c2) B∁(�) ≤ ⋁{B∁(� ∗ �), B∁(�)}	and	C∁(�) ≥

⋀{C∁(� ∗ �), C∁(�)} 
 

for all �, � ∈ D. 
 
Example 3.7. Let D = {0, �, M, N, U} be a BCK-

algebra with the following Cayley Table: 
 

* 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0

0

a b c d

a a a

b b b

c c c c

d d d d a

 

 
Let ∁= (B∁, C∁) be a coupled �-structure in X 

defined by 
 
∁= {〈0; −0.7, −0.2〉,〈�; −0.7, −0.2〉,〈M; −0.7, −0.2〉, 〈N; −0.1, −0.6〉, 〈U; −0.1, −0.6〉}. 

 
Then	∁= (B∁, C∁) is a coupled �-ideal of X. 

 

Proposition 3.8. Every coupled �-ideal of a 

BCK/BCI-algebra X satisfies the following 

assertion: 
 
(∀�, �, \ ∈ D)	(� ∗ � ≤ \	 ⇒
	� B∁(�) ≤ ⋁{B∁(�) , B∁(\)}

C∁(�) ≥ ⋀{C∁(�), C∁(\)}/)                               (3.2) 

 

Proof: Let	�, �, \ ∈ D be such that � ∗ � ≤ \. Then 
(� ∗ �) ∗ \ = 0, and so 
 
		B∁(�) ≤ 	 ⋁{ B∁(� ∗ �), B∁(�)} ≤ ⋁{⋁{B∁((� ∗ �) ∗
\), B∁(\)}, B∁(�)} = ⋁{⋁{B∁(0) , B∁(\)}, B∁(�)} =

⋁{B∁(�), B∁(\)} 
 
and 
 
	C∁(�) ≤ 	 ⋀{ C∁(� ∗ �), C∁(�)}  
≤ ⋀{⋀{ C∁((� ∗ �) ∗ \), C∁(\)}, C∁(�)  

= ⋀{⋀{ C∁(0), C∁(\)}, C∁(�)} = ⋀{ C∁(�), C∁(\)}.  
 
This completes the proof. 
 
Corollary 3.9. Every coupled �-ideal of a 

BCK/BCI-algebra X satisfies the following 

implication: 
 
(∀�, � ∈ D)<� ≤ �	 ⇒ 	 B∁(�) ≤ B∁(�), C∁(�) ≥
C∁(�)?.                                                               (3.3) 
 

Proposition 3.10. For a coupled �-ideal ∁=
(B∁, C∁) of a BCK/BCI-algebra X, the following are 

equivalent: for any �, � ∈ D 
 

(1) (∀�, � ∈ D) ]^∁(V∗W)_^∁((V∗W)∗W)
`∁(V∗W)a`∁((V∗W)∗W)b. 

 

(2)		(∀�, �, \ ∈ D)		]^∁<(V∗c)∗(W∗c)?∗_^∁((V∗W)∗c)
`∁((V∗c)∗(W∗c))a`∁((V∗W)∗c) b. 

 
Proof: Assume that (1) is valid and let	�, �, \ ∈ D. 
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Since 
 

]<� ∗ (� ∗ \)? ∗ \b ∗ \ = <(� ∗ \) ∗ (� ∗ \)? ∗ \
≤ (� ∗ �) ∗ \, 

 
it follows from (b2), (1) and Corollary 3.9 that 
 

B∁((� ∗ \) ∗ (� ∗ \)) = B∁ ]<� ∗ (� ∗ \)? ∗ \b 

≤ B∁(((� ∗ (� ∗ \)) ∗ \) ∗ \)
≤ B∁((� ∗ �)
∗ \) 

 
and 
 

C∁((� ∗ \) ∗ (� ∗ \)) = C∁ ]<� ∗ (� ∗ \)? ∗ \b 

≥ C∁(((� ∗ (� ∗ \)) ∗ \) ∗ \)
≥ C∁((�
∗ �) ∗ \) 

 
Conversely, suppose that (2) holds. If we use z 

instead of y in (2), then 
 
B∁(� ∗ \) = B∁((� ∗ \) ∗ 0) = B∁((� ∗ \) ∗ (\ ∗ \))

≤ B∁((� ∗ \) ∗ \) 
 
and 
 
C∁(� ∗ \) = C∁((� ∗ \) ∗ 0) = C∁((� ∗ \) ∗ (\ ∗ \))

≥ C∁((� ∗ \) ∗ \) 
 
for all ∀�, \ ∈ D by using (a3) and (b1). This 
proves (1). 
 
Theorem 3.11. For a coupled �-structure 

∁=(B∁, C∁) in a BCK/BCI-algebra X, the following 

are equivalent: 

(1) ∁=(B∁, C∁) is a coupled �-ideal of X. 

(2) The nonempty �(t, s)-level set I{(B∁, C∁); (G, H)} 

is an ideal of X for all G, H ∈ [−1,0] with G + H ≥
−1. 

 

Proof: (1)⇒(2). Obviously,	0 ∈ 	I{(B∁, C∁); (G, H)}. 
Let ∀�, � ∈ D be such that x ∗ y ∈ I{(B∁, C∁); (G, H)} 
and y ∈ I{(B∁, C∁); (G, H)} for all	G, H ∈ [−1,0] with 
G + H ≥ −1. Then B∁(� ∗ �) ≤ G, C∁(� ∗ �) ≥
H, B∁(�) ≤ G, and	C∁(�) ≥ H. Using (c2), we have 
B∁(�) ≤ ⋁{B∁(� ∗ �), B∁(�)} ≤ G and	C∁(�) ≥
⋀{C∁(� ∗ �) , C∁(�)} ≥ H which imply that � ∈
I{(B∁, C∁); (G, H)}. Hence the nonempty �(t, s)-level 
set I{(B∁, C∁); (G, H)} is an ideal of X for all 
G, H ∈ [−1,0] with G + H ≥ −1. 
(2) ⇒ (1). Since 0 ∈ I{(B∁, C∁); (G, H)}, we have the 
condition (c1). Let �, � ∈ D be such that ∁(� ∗ �) =
(GV, HV) and ∁(�) = <GW , HW?, that is, 
B∁(� ∗ �) = GV, C∁(� ∗ �) = HV , B∁(�) =
GW, and	C∁(�) = HW . 

Then � ∗ � ∈ I{(B∁, C∁); (GV, HV)}	and � ∈

IY(B∁, C∁); <GW, HW?Z. We may assume that 

(GV, HV) ≪ <GW, HW? without loss of generality. Then 

I{(B∁, C∁); (GV, HV)} ⊆ IY(B∁, C∁); <GW , HW?Z, 

and so � ∗ �, � ∈ IY(B∁, C∁); <GW , HW?Z. Since 

IY(B∁, C∁); <GW, HW?Z is an ideal of X, it follows that 

� ∈ IY(B∁, C∁); <GW, HW?Z so that 
B∁(�) ≤ GW = ⋁{ B∁(� ∗ �), B∁(�)}	and	C∁(�) ≥
HW = ⋀{ C∁(� ∗ �), C∁(�)}  
Therefore ∁=(B∁, C∁) in X is a coupled �-ideal of X. 

 

Theorem 3.12. In a BCK-algebra, every coupled 

�-ideal is a coupled �-subalgebra. 

 

Proof: Let ∁=(B∁, C∁) be a coupled �-ideal of a 
BCK-algebra X. Then the nonempty �-level set 
I{(B∁, C∁); G)} is an ideal of X and so it is a 
subalgebra of X. It follows from Theorem 3.5 that 
∁=(B∁, C∁) is a coupled �-subalgebra of X. 

The following example shows that the converse 
of Theorem 3.12 is not true. 
 
Example 3.13. Let D = {0,1,2,3,4} be a BCK-
algebra with the following Cayley Table. 
 

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 1 0 1 0

3 3 3 3 0 0

4 4 4 4 3 0

 

 
Let ∁=(B∁, C∁) be a coupled �-structure in X 

defined by 
 
∁= {〈0; −0.6, −0.3〉, 〈1; −0.6, −0.3〉, 〈2; −0.4, −0.5〉,〈3; −0.4, −0.5〉, 〈4; −0.4, −0.5〉}  

 
Then ∁=(B∁, C∁) is a coupled �-subalgebra of X. 

But it is not a coupled �-ideal of X since 
 
B∁(2) = −0.4 ≰ −0.6 = 	 ⋁{ B∁(2 ∗ 1), B∁(1)}  
 
and/or 
 
				C∁(2) = −0.5 ≱ −0.3 = ⋀{ C∁(2 ∗ 1), C∁(1)}.	  
 
Theorem 3.12. is not true in a BCI-algebra as seen 
in the following example. 
 
Example 3.14. Consider a BCI-algebra X ∶= Y ×
Z  where (Y ,* ,0) is a BCI-algebra and (Z ,−,0) 
is the adjoint BCI-algebra of the additive group (

Z ,+, 0) of integers (see [13]). Let ∁=(B∁, C∁) be a 
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coupled �-structure in X defined by 
 

B∁(�) = � G	if	� ∈ i × (N ∪ {0}),
0	otherwise,																				/ 

 

C∁(�) = l H	if	� ∈ i × (N ∪ {0}),
0	otherwise																				/ 

 
for all � ∈ D, where N is the set of all natural 
numbers and H, G ∈ [−1,0] with G + H ≥ −1. One 
can easily check that	∁=(B∁, C∁) satisfies the 
conditions (c1) and (c2). Hence ∁=(B∁, C∁) is a 
coupled �-ideal of X. Take x = (0, 0) and y = (0, 1). 
Then \ ≔ � ∗ � = (0,0) ∗ (0,1) = (0, −1), and so 
 
										B∁(� ∗ �) = B∁(\) = 0 ≰ ⋁{ B∁(�), B∁(�)}  
 
and/or 
 
							C∁(� ∗ �) = C∁(\) = 0 ≱ ⋀{ C∁(�), C∁(�)}.  
 
Therefore	∁=(B∁, C∁) is not a coupled �-subalgebra 
of X. 

We now provide a condition for a coupled �-
subalgebra to be a coupled �-ideal. 
 
Theorem 3.15. Let ∁=(B∁, C∁) be a coupled �-

subalgebra of a BCK/BCI-algebra X such that 
 
B∁(x) ≤ ⋁{B∁(�), B∁(\)}, C∁(�) ≥ ⋀{C∁(�), C∁(\)}	 (3.4) 
 
for all �, �, \ ∈ D with � ∗ � ≤ \. Then ∁=(B∁, C∁) is 

a coupled �-ideal of X. 

 

Proof: Let ∁=(B∁, C∁) be a coupled �-subalgebra of 
a BCK/BCI-algebra X satisfying the condition (3.4). 
Recall from Proposition 3.4 that B∁(0) ≤ B∁(�) and 
C∁(0) ≥ C∁(�) for all	� ∈ D. Since � ∗ (� ∗ �) ≤ � 
for all �, � ∈ D, it follows from (3.4) that 
 
	B∁(�) ≤ ⋁{B∁(� ∗ �), B∁(�)}, C∁(�) ≥
⋀{C∁(� ∗ �), C∁(�)}	  
 
Hence ∁=(B∁, C∁) is a coupled �-ideal of X. 

For any element a of a BCK/BCI-algebra X, let 
 

Dn ≔ {� ∈ D│B∁(�) ≤ B∁(�), C∁(�) ≥ C∁(�)} 
 

Obviously, Dn is a non-empty subset of X. 

 

Theorem 3.16. Let a be any element of a BCK/BCI-

algebra X. If ∁=(B∁, C∁) is a 

coupled �-ideal of X, then the set Dn is an ideal of 

X. 

 

Proof: Obviously, 0 ∈ Dn. Let �, � ∈ D be such 
that � ∗ � ∈ Dn and � ∈ Dn. Then B∁(� ∗ �) ≤
B∁(�), C∁(� ∗ �) ≥ C∁(�), B∁(�) ≤
B∁(�)	and		C∁(�) ≥ C∁(�). It follows from (c2) that 
 
		B∁(�) ≤ ⋁{B∁(� ∗ �), B∁(�)} ≤ B∁(�)  

 
and 
 
	C∁(�) ≥ ⋀{C∁(� ∗ �), C∁(�)} ≥ C∁(�)  
 
so that � ∈ Dn.	Therefore Dn is an ideal of X. 

 

Theorem 3.17. Let a be any element of a BCK/BCI-

algebra X and let ∁=(B∁, C∁) be a coupled �-

structure in X. Then 

(1) If Dn is an ideal of X, then ∁=(B∁, C∁) 
satisfies the following assertion: 
 

(∀�, �, \ ∈ D)	 ] ∁̂(V)a⋁{ ∁̂(W∗c), ∁̂(c)}⇒	 ∁̂(V)a ∁̂(W)
`∁(V)_⋀{`∁(W∗c),`∁(c)}⇒`∁(V)_`∁(W)b.    (3.5) 

 
(2) If ∁=(B∁, C∁) satisfies (3.5) and 

(∀� ∈ D)	<B∁(0) ≤ B∁(�), C∁(0) ≥ C∁(�)?,				   (3.6) 
 
then Dn is an ideal of X. 

 

Proof: (1) Assume that Dn is an ideal of X for all 
� ∈ D. Let �, �, \ ∈ D be such that B∁(�) ≥
⋁{B∁(� ∗ \), B∁(\)} 	and	C∁(�) ≤ ⋀{C∁(� ∗
\), C∁(\)}. Then � ∗ \ ∈ DV and \ ∈ DV. Since DV is 

an ideal of X, it follows that � ∈ DV so that B∁(�) ≤
B∁(�) and C∁(�) ≥ C∁(�). 
(2) Suppose that ∁=(B∁, C∁) satisfies two conditions 
(3.5) and (3.6). Let �, � ∈ D be such that � ∗ �	 ∈
Dn and � ∈ Dn. Then B∁(� ∗ �) ≤ B∁(�), C∁(� ∗
�) ≥ C∁(�)¸ B∁(�) ≤ B∁(�) and C∁(�) ≥ C∁(�). 

Hence B∁(�) ≥ ⋁{B∁(� ∗ �), B∁(�)} and	C∁(�) ≤
⋀{C∁(� ∗ �), C∁(�)} which imply from (3.5) that 
B∁(�) ≥ B∁(�) and C∁(�) ≤ C∁(�).	Thus � ∈ Dn. 
Obviously, 0 ∈ Dn. Therefore Dn	is an ideal of X. 

 
Definition 3.18. An �-structure ∁=(B∁, C∁) in a BCI-
algebra X is called a coupled �S-ideal of X if it is 
both a coupled �-subalgebra and a coupled �-ideal 
of X. 

 
Example 3.19. Let D = {0,1, �, M, N} be a BCI-
algebra with the following Cayley Table. 
 

* 0 1

0 0 0

1 1 0

0

0

0

a b c

a b c

a b c

a a a c b

b b b c a

c c c b a

 

 
Let ∁=(B∁, C∁) be a coupled �-structure in X 

defined by 
 

∁= {〈0; −0.8, −0.1〉,〈1; −0.6, −0.3〉,〈�; −0.5, −0.4〉,〈M; −0.2, −0.7〉,〈N; −0.2, −0.7〉}  
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Then ∁=(B∁, C∁) is a coupled �s-ideal of X. 

 

Theorem 3.20. Let ∁=(B∁, C∁) be a coupled �-

structure in a BCI-algebra X which is given by 
 

B∁(�) ≔ �G5					if	� ∈ Dp,
G8	otherwise, / C∁(�) ≔ �H5					if	� ∈ Dp,

H8	otherwise /  (3.7) 

 
for all � ∈ D, where Dp = {� ∈ D	|0 ≤ �}, G5 < G8 

and H5 > H8 in [−1,0] with −1 ≤ G� + H� 	Bs4	� =
1,2. Then ∁=(B∁, C∁) is a coupled �S-ideal of X. 

 
Proof: Since	0 ∈ Dp, we have	B∁(0) = G5 ≤ B∁(�) 
and C∁(0) = H5 ≥ C∁(�)	for all � ∈ D. For any 
�, � ∈ D; if � ∈ Dp then 
	B∁(�) = G5 ≤ ⋁{B∁(� ∗ �) , B∁(�)}	and	C∁(�) =
H5 ≥ ⋀{C∁(� ∗ �), C∁(�)}.  
 

Assume that �∉Dp. If � ∗ � ∈ Dp then �∉Dp, and 

if � ∈ Dp then � ∗ � ∉ Dp. In either case, we get 

 
	B∁(�) = G8 = ⋁{B∁(� ∗ �) , B∁(�)}	and	C∁(�) =
H8 = ⋀{C∁(� ∗ �), C∁(�)}.  
 

If any one of x and y does not belong toDp, then 
 
						B∁(�) ≤ G8 = ⋁{B∁(�) , B∁(�)}	and	C∁(�) ≥
H8 = ⋀{C∁(�), C∁(�)}.  
 

If �, � ∈ Dp, then � ∗ � ∈ Dp and so 
 
						B∁(�) = G5 = ⋁{B∁(�) , B∁(�)}	and	C∁(�) =
H5 = ⋀{C∁(�), C∁(�)}.  
 

Therefore ∁=(B∁, C∁) is a coupled �S-ideal of X. 

 

For any coupled �-structure in a BCI-algebra X, 

we consider the next condition. 
 
(∀� ∈ D)<B∁(0 ∗ �) ≤ B∁(�), C∁(0 ∗ �) ≥ C∁(�)?. (3.8) 
 
Proposition 3.21. Every coupled �S-ideal 

∁=(B∁, C∁) in a BCI-algebra X satisfies the condition 

(3.8). 
 

Proof: For any � ∈ D, we have 
 
																B∁(0 ∗ �) ≤ ⋁{B∁(0), B∁(�)} ≤
⋁{B∁(�), B∁(�)} ≤ B∁(�)  
 
and 
 
																	C∁(0 ∗ �) ≥ ⋀{C∁(0), C∁(�)} ≥
⋀{C∁(�), C∁(�)} ≥ C∁(�)  
 

Hence ∁=(B∁, C∁) satisfies the condition (3.8). 
 

We provide conditions for a coupled �-ideal to be a 
coupled �-subalgebra. 

 
Theorem 3.22. Let ∁=(B∁, C∁) be a coupled �-

structure in a BCI-algebra X satisfying the 

condition (3.8). If ∁=(B∁, C∁) is a coupled �-ideal of 

X, then it is a coupled �- subalgebra of X. 

 

Proof: Note that (� ∗ �) ∗ � ≤ 0 ∗ � for all 
�, � ∈ D. Using Proposition 3.8 and the condition 
(3.8), we have 
 
		B∁(� ∗ �) ≤ ⋁{B∁(�), B∁(0 ∗ �)} ≤ ⋁{B∁(�), B∁(�)}  
 
and 
 
C∁(� ∗ �) ≥ ⋀{C∁(�), C∁(0 ∗ �)} ≥
⋀{C∁(�), C∁(�)}  
 
Therefore ∁=(B∁, C∁) is a coupled �-subalgebra of X. 

 

Definition 3.23. Let X be a BCK-algebra. A 
coupled �-structure ∁=(B∁, C∁) in X is called a 
coupled �C-ideal of X if it satisfies the condition 
(c1) and 
 

(∀�, �, \ ∈ D) ] ^∁(V∗(W∇V))_⋁{ û<(V∗W)∗c?, û(c)}
v∁<V∗(W∇	V)?a⋀{v∁<(V∗W)∗c?,v∁(c)}b. (3.9) 

 
Example 3.24. Consider a BCK-algebra 
X={0,a,b,c} which is given in Example 3.3. Let 
∁=(B∁, C∁) be a coupled �-structure in X defined by 
 
∁= {〈0; −0.6, −0.2〉,〈�; −0.4, −0.4〉,〈M; −0.3, −0.5〉, 〈N; −0.3, −0.5〉} 
 
Routine calculations give that ∁=(B∁, C∁) is a 
coupled �C-ideal of X. 

 

Theorem 3.25. In a BCK-algebra X, every coupled 

�C-ideal is a coupled �-ideal. 

 

Proof: Let ∁=(B∁, C∁) be a coupled �C-ideal of a 
BCK-algebra X. Let ∀�, �, \ ∈ D. Using (3.9) and 
(b1), we have  
 
B∁(�) = B∁(� ∗ (0∇�)) ≤ ⋁{B∁((� ∗ 0) ∗
\), B∁(\)} = ⋁{B∁(� ∗ \), B∁(\)}  
 
and 
 
		C∁(�) = C∁(� ∗ (0∇�)) ≤ ⋀{C∁((� ∗ 0) ∗
\), C∁(\)} = ⋀{C∁(� ∗ \), C∁(\)}  
 
Hence ∁=(B∁, C∁) is a coupled �-ideal of X. 

 

The following example shows that the converse 
of Theorem 3.25 is not true. 
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Example 3.26. Let D = {0,1,2,3,4} be a BCK-
algebra with the following Cayley Table: 
 

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 3 0

 

 
Let ∁=(B∁, C∁) be a coupled �-structure given by 

 
∁= {〈0; −0.7, −0.25〉, 〈1; −0.6, −0.35〉, 〈2; −0.4, −0.45〉,〈3; −0.4, −0.45〉, 〈4; −0.4, −0.45〉}  

 
Then ∁=(B∁, C∁) is a coupled �-ideal of X, but it is 

not a coupled �C-ideal of X since 
 
		B∁(2 ∗ (3∇2)) = B∁(2) = −0.4 > −0.7 =
⋁{ B∁((2 ∗ 3) ∗ 0), B∁(0)}  
 
and/or 
 
	C∁(2 ∗ (3∇2)) = C∁(2) = −0.45 < −0.25 =
⋀{C∁((2 ∗ 3) ∗ 0), C∁(0)}  
 
Theorem 3.27. Let X be a BCK-algebra. A coupled 

�-structure ∁=(B∁, C∁) in X is a coupled �C-ideal of 

X if and only if ∁=(B∁, C∁) is a coupled �-ideal of X 

that satisfies: 
 

(∀�, �, \ ∈ D)	  ]^∁(V∗W)a^∁(V∗(W∇V))
v∁(V∗W)_v∁(V∗(W∇V))b.               (3.10) 

 

Proof: Assume that ∁=(B∁, C∁) is a coupled �C-
ideal of X. Then ∁=(B∁, C∁) is a coupled �-ideal of X 

by Theorem 3.25. Taking z = 0 in (3.9) and using 
(c1) and (b1) induces (3.10).  

Conversely, let ∁=(B∁, C∁) be a coupled �-ideal of 
a BCK-algebra X that satisfies the condition (3.10). 
Then we have 

 

(∀�, �, \ ∈ D) 	]^∁(V∗W)_⋁{^∁((V∗W)∗c),^∁(c)}
v∁(V∗W)a⋀ `∁((V∗W)∗c),`∁(c)}	b.   (3.11) 

 
Combining (3.10) and (3.11) yields (3.9). Hence 
∁=(B∁, C∁) is a coupled �C-ideal of X. 

 
Theorem 3.28. In a commutative BCK-algebra, 

every coupled �-ideal is a coupled �C-ideal. 

 
Proof: Let ∁=(B∁, C∁) be a coupled �-ideal of a 
commutative BCK-algebra X. Since X is 
commutative, it follows from (a1) and (b2) that 
 

]<� ∗ (�∇�)? ∗ <(� ∗ �) ∗ \?b ∗ \ = <(� ∗ (�∇�)? ∗
\) ∗ 	<(� ∗ �) ∗ \? ≤(� ∗ (�∇�)) ∗ (� ∗ �) =

(�∇�) ∗ (�∇�) = 0 
 

so that ]<� ∗ (�∇�)? ∗ <(� ∗ �) ∗ \?b ∗ \ = 0, i.e., 

<� ∗ (�∇�)? ∗ ((� ∗ �) ∗ \) ≤ \ for all �, �, \ ∈ D. 
Since ∁=(B∁, C∁) is a coupled �-ideal, we have 
 
	B∁<� ∗ (�∇�)? ≤ ⋁{B∁ <(� ∗ �) ∗ \?, B∁(\)}  
 
and 
 
	C∁<� ∗ (�∇�)? ≥ ⋀{C∁<(� ∗ �) ∗ \?, C∁(\)}  
 
for all �, �, \ ∈ D by Proposition 3.8. Therefore 
∁=(B∁, C∁) is a coupled �C-ideal of X. 

 
Lemma 3.29. [14] An ideal A of a BCK-algebra X 

is commutative if and only if the following 

implication is valid: 
 

(∀�, � ∈ D)(� ∗ � ∈ w	 ⇒ � ∗ (�∇�) ∈ w). 
 

Theorem 3.30. For a coupled �-structure 

∁=(B∁, C∁) in a BCK-algebra X, the following are 

equivalent: 

(1) ∁=(B∁, C∁) is a coupled �C-ideal of X: 

(2) The nonempty �(t, s)-level set of ∁=(B∁, C∁) is 

a commutative ideal of X for all t, s∈[-1, 0] 
with t + s ≥ −1. 

 
Proof: Assume that ∁=(B∁, C∁) is a coupled �C-
ideal of X. Let t, s∈[-1, 0] be such that t + s ≥ −1. 
Then ∁=(B∁, C∁) is a coupled �-ideal of X by  
 

Theorem 3.25. and so the nonempty �(t, s)-level 
set of ∁=(B∁, C∁) is an ideal of X by Theorem 3.11. 
Let �, � ∈ D be such that � ∗ � ∈ I{(B∁, C∁); (G, H)}. 

Then B∁(� ∗ �) ≤ G and C∁(� ∗ �) ≥ H. It follows 
from (3.10) that 
B∁(� ∗ (�∇�)) ≤ B∁(� ∗ �) ≤ G and C∁(� ∗

(�∇�)) ≥ C∁(� ∗ �) ≥ H. 
Therefore � ∗ (�∇�) ∈ I{(B∁, C∁); (G, H)}. Using  
 

Lemma 3.29. we conclude that the nonempty �(t, 
s)-level set of ∁=(B∁, C∁) is a commutative ideal of X 

for all t, s∈[-1, 0] with t + s ≥ −1. 
Conversely, suppose that the nonempty �(t, s)-

level set of ∁=(B∁, C∁) is a com-mutative ideal of X 

for all t, s∈[-1, 0] with t + s ≥ −1. Then it is an 
ideal of X, and so	∁=(B∁, C∁) is a coupled �-ideal of 
X by  
 

Theorem 3.11. Assume that there 
exist �, M, N ∈ D such that B∁(� ∗ M) < B∁(� ∗
(M∇�)) or C∁(� ∗ M) > C∁(� ∗ (M∇�)). For the case 
B∁(� ∗ M) < B∁(� ∗ (M∇�)) and C∁(� ∗ M) ≤ C∁(� ∗
(M∇�)), let Gx ≔ 5

8 ]B∁(� ∗ M) + B∁<� ∗ (M∇�)?b 

and Hx ≔ C∁(� ∗ M). Then  



 
 

IJST (2013) 37A2: 133-140                                                                                                                                          140 
 

� ∗ M ∈ I{(B∁, C∁); (Gx, Hx)}, but � ∗ (M∇�) ∉
I{(B∁, C∁); (Gx, Hx)}. For the case B∁(� ∗ M) ≥
B∁<� ∗ (M∇�)? and C∁(� ∗ M) > C∁(� ∗ (M∇�)), let 

Gx ≔ B∁(� ∗ M) and Hx ≔ 5
8 ]C∁(� ∗ M) + C∁<� ∗ (M∇�)?b. Then  

� ∗ M ∈ I{(B∁, C∁); (Gx, Hx)}, but � ∗ (M∇�) ∉
I{(B∁, C∁); (Gx, Hx)}. If B∁(� ∗ M) < B∁<� ∗ (M∇�)? 
and C∁(� ∗ M) > C∁(� ∗ (M∇�)), then � ∗ M ∈
I{(B∁, C∁); (Gx, Hx)}		but � ∗ (M∇�) ∉ I{(B∁, C∁); (Gx, Hx)}		 
where Gx ≔ 5

8 ]B∁(� ∗ M) + B∁<� ∗ (M∇�)?b and Hx ≔
5
8 ]C∁(� ∗ M) + C∁<� ∗ (M∇�)?b. This is a contradiction, 

and so (3.10) is valid. Therefore ∁=(B∁, C∁) is a 
coupled Iy-ideal of X by Theorem 3.27. 
 
Theorem 3.31. Let a be any element of a BCK-

algebra X. If ∁=(B∁, C∁) is a coupled �C-ideal of X, 

then the set 
 

Dz ≔ {� ∈ D	│B∁(�) ≤ B∁(�), 	C∁(�) ≥ 	C∁(�)} 
 
is a commutative ideal of X. 

 

Proof: If	∁=(B∁, C∁) is a coupled �C-ideal of X, then 
it is a coupled �-ideal of X by Theorem 3.25. Hence 
Xa is an ideal of X by Theorem 3.16. Let �, � ∈ D 

be such that � ∗ � ∈ Dz; Then B∁(� ∗ �) ≤ B∁(�) 
and 	C∁(� ∗ �) ≥ 	C∁(�). It follows from (3.10) that 
B∁<� ∗ (�∇�)? ≤ B∁(� ∗ �) ≤ B∁(�) and C∁<� ∗
�∇�≥C∁(�∗�)≥C∁(�) so that �∗�∇�∈D�. Using 
Lemma 3.29, we know that Xa  is a commutative 
ideal of X. 

Acknowledgments 

The authors wish to thank the anonymous reviewers 
for their valuable suggestions. The first author, Y. 
B. Jun, is an Executive Research Worker of 
Educational Research Institute Teachers College in 
Gyeongsang National University. 

References 

[1] Imai, Y. & Iséki, K. (1966). On axiom systems of 
propositional calculi. Proc. Jpn. Acad., 42, 19-21. 

[2] Iséki, K. (1966). An algebra related with a 
propositional calculus. Proc. Japan Acad., 42, 26-29. 

[3] Iséki, K. (1980). Some examples of BCI-algebras. 
Math. Seminar �otes, 8, 237-240. 

[4] Iséki, K. (1975). On ideals in BCK-algebras. Math. 

Seminar �otes, 3, 1-12. 
[5] Iséki, K. (1975). On some ideals in BCK-algebras. 

Math. Seminar �otes, 3, 65-70. 
[6] Iséki, K. & Tanaka, S. (1978). An introduction to the 

theory of BCK-algebras. Math. Jpn, 23, 1-26. 

[7] Jun, Y. B. & Kondo, M. (2004). Transfer principle of 
fuzzy BCK/BCI-algebras. Sci. Math. Jpn. 59, 35-40. 

[8] Kondo, M. & Dudek, W. A. (2005). On the transfer 
principle in fuzzy theory. Math-ware and Soft 

Computing, 12, 41-55. 
[9] Meng, J. (1991). Commutative ideals in BCK-

algerbas. Pure Appl. Math. (in China), 9, 49-53. 
[10] Jun, Y. B., Lee, K. J. & Song, S. Z. (2009). �-ideals 

of BCK/BCI-algebras, J. Chungcheong Math. Soc., 22, 
417-437. 

[11] Jun, Y. B., Ä OztÄurk, M. A. & Roh, E. H. (2010). 
�-structures applied to closed ideals in BCH-algebras. 
Internat. J. Math. Math. Sci., Volume 2010, Article ID 
943565, 9 pages. 

[12] Jun, Y. B., Lee, K. J. & Kang, M. S. (2012). Ideal 
theory in BCK/BCI-algebras based on soft sets and �-
structures. Discrete Dynamics in �ature and Society 

Volume 2012, Article ID 910450, 13 pages. 
[13] Huang, Y. S. (2006). BCI-algebra. Beijing, Science 

Press. 
[14] Meng, J. & Jun, Y. B. (1994). BCK-algebras. Seoul, 

Kyungmoon Sa Co. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


