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Abstract– This research paper provides a mathematical modeling of heat transfer enhancement 
during melting process in a square cavity through dispersion of nanoparticles. The enthalpy-based 
lattice Boltzmann method (LBM) with a combination of D2Q9 and D2Q5 lattice models is used to 
solve density, velocity and temperature fields. The nano-enhanced phase change material 
(NEPCM) is composed of a dilute suspension of copper particles in water (ice) and is melted from 
the left. Also, in this study the sub-cooling case is neglected. Conduction heat transfer has been 
taken into account in the solid phase as well as natural convection in the liquid phase. Numerical 
simulations are performed for various volume fractions of nanoparticles and Rayleigh numbers 
ranging from 104 to 106. The validation of results is carried out by comparing the present results of 
natural convection and convection-dominated melting in a square cavity with those of existing 
earlier numerical studies. Predicated results illustrate that by suspending the nanoparticles in the 
fluid the thermal conductivity of NEPCM is increased in comparison with PCM. Also, by 
enhancing thermal conductivity and decreasing latent heat of fusion higher rates of heat release 
can be obtained.            
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1. INTRODUCTION 
 

Solid-liquid phase change phenomena, either melting or solidification, occur often in many industrial 
processes as well as in nature. They especially appear in applications such as latent heat thermal energy 
storage systems (LHTESS), purification, removal of heat from electronic components, molding, growth of 
crystals, laser manufacturing, drilling and so forth. 

Phase change materials (PCMs) are ideal products for the purpose of thermal energy storage whereby 
thermal energy can be stored at a constant temperature during phase change. The PCMs that have been 
subdivided by many authors into organic, non-organic and eutectics compounds experience reversible 
phase transformations. However, it must be mentioned that the main unacceptable property of most PCMs, 
as examined by many researchers is their low thermal conductivity that prevents high rates of energy 
charging and discharging. So it is highly recommended to enhance thermal conductivity of PCM with 
various techniques such as fins, insertion of a metal matrix, metal honeycombs, using dispersing high 
conductivity particles into the PCM, etc.  

In recent years, nanofluids have attracted greater interest in various engineering applications because 
of the remarkable increase in effective thermal conductivity of base fluid [1]. Masuda et al. [2] reported on 
improved thermal conductivity of dispersed ultra-fine (nanosize) particles in liquids. Choi [3] was the first 
to coin the term “nanofluids” for this new class of fluids with superior thermal properties. Khanafer et al. 
[4] investigated the heat transfer enhancement in a two-dimensional enclosure using nanofluids for a range 
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of Grashof numbers and volume fractions. Ranjbar et al. [5] studied numerically the effect of utilizing 
nanoparticle on the solidification phase front inside a rectangular container. Their findings showed that 
with an increase in the nanoparticles volume fraction the nanofluid heat transfer augments. Also, their 
results showed that conduction is the main mode of heat transfer in both phases. The effect of nanoparticle 
dispersion in a concentric annulus was investigated by Sebti et al. [6]. Their study showed that the 
suspended nanoparticles decrease the solidification time and it is possible to improve the traditional 
energy storage systems if the amount of suspended nanoparticles within the PCMs is properly chosen. 

Recently LBMs have become a powerful technique for the computational modeling of a wide variety 
of complex fluid flow problems including single and multiphase flow in complex geometries [7-14]. 
Nemati et al. [15] found the effect of various nanofluids on mixed convection flows using an LB model 
that is the same as that used in Refs [16-18]. Yang and Lai [19] examined numerically the flow and heat 
transfer characteristics of alumina-water in a microchannel using LBM. This paper proved that LBM is a 
capable method for predictions of flow and heat transfer in a microchannel. These authors also made a 
numerical effort to model natural convection in a square cavity that filled with Al2O3/water nanofluids 
using LBM [20]. The results indicated that with the use of nanofluid, the average Nusselt number becomes 
higher than that of using water for the same Ra. He et al. [21] developed an LB model by coupling density 
and temperature distribution functions to simulate natural convection using Al2O3-water nanofluids in a 
plain square cavity. They illustrated that the sensitivity of heat transfer and flow characteristics of Al2O3-
water to viscosity is more than to thermal conductivity. The simulation of natural convection in tall 
enclosures using LBM was carried out by Kefayati et al. [22]. They explained that by increasing the aspect 
ratio of enclosure the impact of nanoparticles on nanofluid heat transfer enhances. 

In the early studies of simulating melting, one-dimensional conduction was considered to be the 
major mechanism of heat transfer. Then this type of problem could be solved by analytical procedures. 
However, in more real applications natural convection induced in the liquid phase plays a key role on the 
shape and position of phase change front. So, the accurate prediction of solid-liquid phase change front 
becomes the main difficulty with the mathematical modeling of melting. In order to overcome this 
difficulty, complicated numerical methods have been proposed in the literature such as front tracking 
method [23]; level set method [24], adaptive grid method [25], and phase field method [26]. 

Investigation of natural convection melting in a cavity has been held experimentally [27-29], 
theoretically [30-31], and numerically [32-35]. 

Generally, the existing LBMs for solving solid-liquid phase transitions can be classified into two 
separate groups: first, enthalpy-based method [33, 36] and second, phase-field method based on the theory 
of Ginzburg-Landau [37-39]. By applying an enthalpy formula, the solid-liquid phase change problem 
becomes much simpler and has the following benefits: 

1: it eliminates the need to satisfy boundary condition at the phase change front, 2: the temperature is 
evaluated at each node and then for the thermophysical properties can be determined, 3: it allows a mushy 
zone between the solid and liquid phases, 4: by using the temperature field, the position of solid-liquid 
phase change front can be discovered if recommended. 

As mentioned above, by dispersing nanoparticles into PCM thermal conductivity of PCM will be 
improved. So, the aim of this research work is to numerically study melting with natural convection of 
NEPCM in a square cavity. A combination of D2Q9 and D2Q5 lattice models is used to solve both 
velocity and temperature fields. Besides, the enthalpy method is based on the modified version of Jiaung 
et al. [36] melting scheme. To validate our results, the liquid fraction and dimensionless temperature are 
solved based on the Huber et al. [40] work. The effect of various volume fractions of nanoparticles (0 to 
0.03) on the melting rate is studied for Rayleigh numbers of 104,105 and 106. Also, Prandtl number and 
Stefan number are fixed to 6.2 and 1, respectively.  
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2. PHYSICAL MODEL AND GOVERNING EQUATIONS 
 
The physical domain under examination is shown in Fig. 1. The PCM is primarily at the temperature of T0. 
In the case of no subcooling, T0 is equal to Tm. The right, top and bottom walls are adiabatic. The PCM 
begins to melt when the left wall is maintained at the temperature of T1 (T1>T0). The thermophysical 
properties of copper particles and water base were taken in Table 1. For the simulations the following 
assumptions are considered: 

1: the flow in the liquid phase is a laminar, incompressible and Newtonian one, 2: the compression 
work done by the pressure and viscous heat dissipation are neglected, 3: the densities of solid and liquid 
phase are equal during melting, 4: the Boussinesq approximation is used for natural convection, 5: the 
process is considered as a conduction/convection controlled phase change problem, 6: the velocity of 
melted PCM is small enough. 
 

 
Fig. 1. Schematic of computational domain under investigation 

 
Table 1. Thermo-physical properties of NEPCM 

 
 
 
 
 
 
 

 
Therefore, the two dimensional of equations for natural convection with phase can be written as 
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property Copper nano-particles Based fluid 
 [kg m-3] 8954 997.1 
 [Pa s] - 8.9×10-4 

pC [J kg-1 K-1] 383 4179 

k [w m-1 K-1] 400 0.6 

  
1.67×10-5 2.1×10-4 

Ste - 1 
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In these relations, ui is the fluid velocity, nf  is the NEPCM’s density, eff  is the dynamics viscosity of 
NEPCM, P is the pressure, g is the gravitational acceleration, Lnf is the effective latent heat of phase 
change, keff is the effective thermal conductivity. 

The density of the nanofluid is given by: 

                  (1 )nf f s       (4) 

Whereas the heat capacitance of the nanofluid and part of the Boussinesq term are: 

                   ( ) (1 )( ) ( )p nf p f p sc c c        (5) 

                      ( ) (1 )( ) ( )nf f s        (6) 

with  being the volume fraction of the solid particles and subscripts f, nf and s stand for base fluid, 
nanofluid and solid particle, respectively. The viscosity of the nanofluid containing a dilute suspension of 
small rigid spherical particles is given by: 
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The effective thermal conductivity of nanofluid was given by Patel et al. [41] as follows: 
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Where c is a constant and must be determined experimentally, Ap/Af  and Pe here are defined as: 
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Where dp is the diameter of solid particles and it is assumed to be equal to 100 nm, df is the molecular size 
of liquid that is taken as 2 Å for water. Also, up is the Brownian motion velocity of nanoparticle which is 
defined as: 
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Where kb is the Boltzmann constant.The latent heat is evaluated using: 

                             ( ) (1 )( )nf fL L     (12) 
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It is clear that Eqs. (11) and (12) were employed in the liquid region of NEPCM while other relations were 
applied in all regions of NEPCM. 
 

3. LBM 
 
a) LB equation for the velocity field 
 
In the LBM, the particles are described by quantities fi representing the particle density distributions. The 
main equation that needs to be solved is: 

     iiii txftttcxf  ),(),(  (13) 

The collision term Ωi on the right-hand side of Eq. (13) uses the so called Bhatangar-Gross-Krook (BGK) 
approximation [42]. This collision term will be substituted by the well-known classical single time 
relaxation approach: 
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Where   is the relaxation time depending on the fluid viscosity and eq
if is the local equilibrium 

distribution function that has properly prescribed dependence on the local physical properties. Fi is the 
external force in the direction of lattice velocity. In order to formulate buoyancy force in the natural 
convection problem, the Boussinesq approximation was applied and radiation heat transfer is insignificant, 
therefore the force term in the Eq. (14) needs to be computed as shown below in the vertical direction (y): 
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refT is the reference temperature. The LB equation for dynamical system is completed by choosing the 
equilibrium distribution [43]: 
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Where i is the equilibrium distribution weight for direction of i.  
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ic  denotes the discrete velocity set for D2Q9 topology. 
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Where the streaming speed is defined as 1 txc . The density and velocity are obtained through 
moment summations in the velocity space: 
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The Chapman – Enskog expansion has already been used to obtain macroscopic equations such as for 
viscosity. The detailed derivation was given by Hou et al. [44] and will not be shown here. The viscosity is 
given by 

            
tcs  2)5.0(   (21) 

sc is the speed of sound and identified as 322 ccs  . The positivity of the viscosity requires .5.0   
b) LB equation for the temperature field 
 

In general, LB methods for a fluid flow involving heat transfer in a plain medium can be classified 
into four categories: multispeed (MS), entropic, hybrid and multi-distribution function (MDF) models. In 
the present study, the MDF approach [45-46] was chosen to simulate natural convection. The evolution 
equations for the temperature (gi) in the fluid are also described by a BGK dynamic and are given as 
follows: 

             
)),(),((1),(),( txgtxgtxgtttcxg eq

ii
T

iii 


 (22) 

T  is the relaxation time for temperature field. The simplified equilibrium temperature distribution 
function is given by: 
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Where iv and T
i are the associated lattice velocities and weights. For the evolution of ig , a D2Q5 lattice 

is chosen. In this topology, the velocities iv are: 
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The associated weights, T
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from: 
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Through the Chapman-Enskog expansion, the energy equation can be exactly recovered from LB 
equation. The thermal diffusivity is associated with non-dimensional thermal relaxation time by Eq. (26):  
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By adjusting τ and τT, the MDF technique provides the feasibility to change Pr. 
 
c) Phase change treatment with LBM 
 

To solve phase change problem, a slightly modified version of Jiaung et al. [36] melting scheme is 
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used. They used enthalpy method to find both temperature and liquid fraction. In the enthalpy technique, 
the phase change front is not explicitly tracked. Instead, an amount named the liquid fraction, which 
shows the fraction of the cell volume that is in liquidized form, is related to each cell. The liquid fraction 
is calculated at each iteration based on the value of enthalpy. Hence, the phase change front conditions are 
automatically attained. It also creates a mushy zone in which the liquid fraction varies from 0 to 1. This 
zone prevents some discontinuities that may lead to some numerical instabilities.      
The local enthalpy at the time step n and iteration k is evaluated according to Eq. (27) as: 
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where Tm is the melting temperature. Afterwards the temperature distribution functions are acquired by   
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d) Nano fluid treatment with LBM 
 

The dimensionless relaxation time for velocity and thermal fields which are evaluated by the 
nanofluid properties are as follows: 
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That lbm subscript determines the lattice scale. This technique is the same with Das et al. [47] and Wang 
et al. [48] in simulation of variable thermal conductivity in LB.  

Also, the parameters of pc ,  and fL should be replaced with nfpc )( , nf  and nfL into related 
equations in the previous section. 
 
e) Boundary conditions 
 

The commonly used type of boundary condition in LBM is the bounce-back boundary scheme. This 
scheme is usually used to obtain no-slip velocity conditions. By the so-called bounce-back scheme, it 
means that when a particle distribution streams to a stationary wall node, the particle distribution reflects 
back to the original node fluid, but with the direction rotated by π radians. For the left wall, the entering 
distribution functions at i=3,6 and 7 directions are known because they stream from the nodes inside the 
flow field but the leaving distribution functions at i=1,5 and 8 directions are unknown, which can be 
determined from the known distribution functions as follows: 

in
i

out
i ff   (32) 
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The temperature at the left wall is kept at T1 = 1(i.e. prescribed temperature). So, a Dirichlet boundary 
condition can be imposed on this wall. To determine the only unknown distribution function for 
temperature, g1, Eq. (25) is invoked as: 

)(1 43201 ggggg   (33) 

The remaining walls are adiabatic and require no heat conduction in the normal direction. For instance for 
right wall, the unknown distribution function, g3 is determined by 

1,3,3  nn gg  (34) 

Where n-1 show a lattice that is placed inside the cavity close to the boundary nodes.  
 
f) Code validation 
 

A first validation was made using the test case of natural convection in a square cavity [49]. The 
evaluation is fulfilled at three different Rayleigh numbers, 104, 105 and 106 and its results are shown in 
Table 2. As can be seen from Table 2, the accuracy of the present work in comparison with benchmark 
[49] is good. 
 

Table 2. The validation of the current results in a square cavity 

 
maxu H
  

maxv H
  

Num 

Ra= 104    

Benchmark [49] 16.187 19.617 2.243 
Present work 15.71 20.15 2.2394 

Ra= 105    

Benchmark [49] 34.730 68.590 4.519 

Present work 35.54 70.341 4.56 

Ra= 106    

Benchmark [49] 64.630 219.36 8.800 

Present work 58.43 223.1 8.95 

 
Authors in previous work [15] performed an LB simulation of heat transfer enhancement in a lid 

driven cavity subjected to various side wall temperatures and filled with nanofluid. It was found that the 
straightforward implementation of effective thermal conductivity is the significant benefit of this method. 

For melting process in a square cavity, the average Nusselt number on the left wall and the average 
melt front position as a function of dimensionless time were compared with the Huber et al. [40] work for 
Ra=1.7×105, Pr =1 and Ste = 10. As shown in Fig. 2, the comparison between the present study and the 
Huber et al. [40] work is quite satisfying because the maximum discrepancies in the results of average 
melting front position and average Nusselt number are 8 and 6 percent, respectively.  

The height-averaged melting front location, Sav, and the average Nusselt number are computed as in 
Jany and Bejan [30]: 
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Where xm is the deformed melting front in the convection regime, x* is equal to
l
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Diverse grid sizes were chosen and checked to ensure the independency of result from the adopted 
grid size based on comparison of melting fraction. An arrangement of 200×200 grids was found sufficient 
for this study. 
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Fig. 2. Comparison of (a) average melting front position and (b) Nusselt number versus dimensionless time 
between present study and Huber et al's. [40] work for Pr =1 and Ste =1 

 
4. RESULTS AND DISCUSSIONS 

 
The streamlines of a cavity with and without nanoparticles against dimensionless time are shown in Fig. 3 
qualitatively. At the early stages of melting, 0013.0 , no flow is monitored in the melted PCM, pure 
conduction heat transfer is the main mode of heat transfer, melting front moves vertically and it has a 
planar shape. At 02.0 , a recirculation vortex is formed next to the left wall for both cases 
demonstrating the appearance of natural convection in the melted PCM. Afterwards the melted PCM 
floats up, causing the deformation of melting front. From Eq. (8) to Eq. (11) it can be inferred that by 
enhancing the temperature adjacent to the left wall, the effective thermal conductivity of nanofluid will be 
increased. So as time elapses, in the existence of nanoparticles the phase change front moves faster, 
particularly at the top section of the cavity in comparison with the pure fluid, ϕ=0. This is due to the 
augmentation of convection heat transfer and velocity of the molten PCM at this region. 

As plotted in Fig. 4, temperature contours could be an indicator of liquid fractions where the dark 
blue color represents the un-melted PCM (T=T0). For 02.0 , it can be observed that melting rate in the 
top section of the cavity is higher than that of the bottom section. It is shown that the molten zone is very 
narrow in the left side of the bottom section where conduction heat transfer continues to dominate. At the 
end of melting, because of the extreme influence of natural convection in the top section, the phase change 
front becomes flatter almost like a horizontal line.  
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(a) ϕ=0   

     
(b) ϕ=0.03  

     
18.0  12.0  06.0  02.0  0013.0  

 
Fig. 3. Streamlines for a cavity with (a) ϕ=0 and (b) ϕ=0.03 at  

different dimensionless times and Ra =105 
 

 

(a) ϕ=0   

     
(b) ϕ=0.03  

     
18.0  12.0  06.0  02.0  0013.0  

Fig. 4. Temperature contours for a cavity with (a) ϕ=0 and (b) ϕ=0.03 at 
different dimensionless times and Ra =105 

 
Figure 5 reveals the variations of average melting front versus dimensionless time for different 

Rayleigh numbers and solid concentrations. The slope of the graphs specifies the melting rate. At the 
beginning of melting, slopes are very sharp and melting rates are approximately equivalent in each case 
showing the domination of conduction heat transfer. It is demonstrated that the average melting front 
position is increased by enhancing solid concentrations in any Rayleigh number. Furthermore, with the 
increase of Rayleigh numbers the full melting of NEPCM occurs earlier than Ra=104. Unquestionably, 
that is because of the domination of natural convection, especially at the top section. It is obvious that by 
increasing the solid concentration from 0 to 0.03, full melting time declines approximately 38.3, 20.8 and 
17.6 percent at Rayleigh numbers of 104, 105 and 106, respectively.  
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Fig. 5. Full melting time decline for various solid concentrations 
 (a) Ra = 104 (b) Ra = 105 (c) Ra = 106 

 
Variations of dimensionless temperature versus dimensionless time at central point of cavity are 

illustrated in Fig. 6 for various solid concentrations. In this case Rayleigh number is fixed to 105. It can be 
observed that its temperature rises up faster through enhancement of solid concentrations. The fact is that 
by increasing the solid concentrations, melting rate enhances further so that melting front reaches faster to 
this point where the temperature starts to increase in a lesser time. The starting point of melting at this 
point takes place 14.3, 28.5 and 42.8 percent earlier when the solid concentration augmented from 0 to 
0.03 by the step of 0.01, respectively.  
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Fig. 6. Distribution of temperature at central point of cavity 

for different solid concentrations at Ra =105 
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Figure 7 depicts the effect of Rayleigh number on the temperature of central point for solid 
concentration of 0.01. As can be understood, altering the Rayleigh number has a noticeable effect on the 
temperature distribution. By increasing the Rayleigh number from 104 to 106, the beginning time of 
melting at the central point of the cavity decreases 55.5 percent and higher temperatures can be obtained.  
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Fig. 7. Distribution of temperature at central point of cavity for 

different Rayleigh numbers for 02.0  

 
5. CONCLUSION 

 
In the present research study, heat transfer enhancement of PCM through the dispersion of nanoparticles 
was investigated numerically by using enthalpy-based LBM. The lattice D2Q9 was implemented to 
determine the velocity and density fields, while the simplest lattice D2Q5 model was used for temperature 
field. A satisfactory validation between the present study and previous numerical results was carried out. 
Our findings are categorized as follows: (1): The obtained results confirm that conduction heat transfer 
plays a dominant role at the beginning of melting and as the process proceeds natural convection takes the 
key role. By adding nanoparticles into the PCM, the phase change front moves faster mainly at the top 
section in comparison with the pure fluid, ϕ=0. (2): It can be found that melting rate of PCM is noticeably 
intensified by adding copper nanoparticles, owing to the improvement of thermal conductivity and decline 
of the latent heat of fusion. (3): Also, it can be concluded that the NEPCM has great potential for TES 
purposes because the rate of heat release increases significantly.  
 

NOMENCLATURE 
 
 

c Streaming speed[m] Subscripts  

ic  Discrete lattice velocity in direction i f based fluid 

pc  Heat capacity[Jkg-1K-1] i direction 

sc  Speed of sound in Lattice scale nf nanofluid 

En  Total enthalpy[J] ref reference 

sEn  Enthalpy of the solid phase[J] s nanoparticles 

lEn  Enthalpy of the liquid phase[J]  Superscripts  

iF  External force in direction of lattice velocity n time step 
fl Liquid fraction k iteration 

f eq
k  Equilibrium distribution for velocity field Greek symbols  
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Fo Fourier number )( 2lt    Thermal expansion coefficient[K-1] 
g  Acceleration due to gravity force[ms-2] ρ Density[kgm-3] 

g eq
k  Equilibrium distribution for temperature field   Lattice relaxation time 

H  Height of cavity[m]   Volume fraction of nanoparticles 
l Appropriate length scale[m] θ Dimensionless time )( SteFo   
Lf Latent heat of phase change[Jkg-1] α Thermal diffusivity[m2s-1] 

Num Average Nusselt number on the left wall ν Kinetic viscosity[m2s-1] 
Pr Prandtl number )/(   x  Lattice cell size 
Ra  Rayleigh number )/( 3  lTg   t  Lattice time step size 

Ste  Stefan number )( fp LTc     

T0 The initial temperature of PCM[K]      
T1 The temperature of left wall[K]     
Tm The melting temperature of PCM[K]     

*T  Dimensionless temperature   
u Velocity of the fluid[ms-1]   

i  Equilibrium distribution weight   

T
i  The associated weight for temperature field   
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