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Abstract– The ability of mesh design in arbitrary Lagrangian-Eulerian finite element method 
(ALE-FEM) makes it a generally efficient device for simulating engineering problems. In this 
paper, ALE-FEM is used to model the static deflection and instability of beam-type cantilever 
nano-actuators using plain element. Effects of electrostatic fields are taken into account through 
first-order fringing field corrected model. In addition, the influence of quantum vacuum 
fluctuations is considered via attractive Casimir and van der Waals force depending on the range 
of application. The instability parameters, i.e. pull-in voltage and deflection of the nano-actuator 
are computed. The obtained results are compared with those reported in literature using numerical 
method as well as Lagrangian FEM. The findings indicate that ALE method can be used as a 
powerful technique for modeling beam type nano-actuator.           
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1. INTRODUCTION 
 

Finite element (FE) method has been applied as a powerful tool to simulate engineering problems in recent 
decades. The FE approach can be divided into two main branches, i.e. the Lagrangian and the Eulerian 
approach [1]. In the Lagrangian approach, the nodes and material points move together simultaneously 
and therefore this method is suitable for solid mechanics simulations. In the Eulerian approach, the meshes 
are fixed in space and the material points move during deformation, hence it is suitable in fluid mechanics 
applications. In recent years, a more general approach called Arbitrary Lagrangian-Eulerian method 
(ALE) has been developed which contains the advantages of both Lagrangian and Eulerian approaches, 
while avoiding their shortcomings [2-6]. In an ALE analysis, the FE mesh is neither attached to the 
material nor necessarily fixed in space, and the mesh and material point can move separately. The ability 
of mesh motion in ALE reduces the mesh distortion and transfers the mesh to regions which need higher 
mesh density without increasing the number of elements.  

With the huge growth of nanotechnology in recent decades, researchers have focused on modeling 
the behavior of nano-actuators. A typical beam-type nano-actuator is constructed from a conductive 
movable cantilever electrode which is suspended over a conductive fixed ground electrode. Applying 
voltage difference between these electrodes causes the movable electrode to deflect towards the ground 
one, due to electrostatic attraction. The pull-in instability occurs when the electrostatic attraction exceeds 
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the elastic restoring moment of the movable electrode and leads to contact between the two electrodes. 
Various finite element methods are applied to simulate the pull-in instability of micro-structures [7-11]. 
The pull-in instability occurs when external forces (which rise from electrostatic attraction, quantum 
fields, etc.) exceed the elastic resistance of the micro-structure. Batra et al. [9] has used FE method to 
investigate the snap-through instability of micro-switches. The pull-in instability of multi-layer micro-
beams has been simulated in Ref. [7] using FE approach. In nano-distances, electromagnetic quantum 
vacuum fluctuations between the electrodes significantly affect the instability performance of the nano-
actuators as well as electrostatic Coulomb force. The effect of vacuum fluctuations can be modeled 
through the dispersion forces, i.e. Casimir and van der Waals attractions [12]. Useful information about 
the nature of quantum vacuum fluctuations in nanostructures can be found in Refs. [13, 14]. Several semi-
analytical approaches, i.e. lumped parameter [15, 16], homotopy perturbation [17,18], modified Adomian 
decomposition [19], reduced order method [20,21], etc. have been developed to examine the instability of 
nano-actuators incorporating the effects of electrostatic attraction and dispersion forces. However, to the 
best knowledge of the authors, only a few researchers have applied FE models to investigate pull-in 
instability of nano-structures in the presence of both Coulomb and dispersion forces [22]. Moghimi et al. 
[22] has applied FEM to simulate the influence of dispersion forces on the dynamic pull-in behavior of 
beam-type nano-switches.  

In this study, ALE-FEM method is introduced to demonstrate the effects of Casimir and van der 
Waals attractions on the pull-in behavior of beam-type nano-actuators using plain element. To the best of 
our knowledge, using plain-element for FE modeling of dispersion force in NEMS has not been addressed 
previously. The few FEM researches that have focused on this topic used only the beam-element [22]. The 
ALE-FEM results are compared with the numerical data, Lagrangian FEM as well as other results reported 
in the literature. 
 

2. MODELING AND ALE FORMULATION 
 
Figure 1 shows a 2-dimensional cantilever beam-type nano-actuator which consists of a moving electrode 
suspended over the conductive ground plain. The system is modeled by a beam of length L with a uniform 
rectangular cross section of width B and thickness H which is suspended over a conductive substrate. The 
initial geometry, boundary conditions and the FE model of the nano-structure are shown in this figure. The 
system is modeled using the proposed ALE-FEM as a plane strain problem. A feature of the ALE-FEM 
approach is that the density of the mesh can be varied by properly moving the mesh in the course of 
analysis. Therefore, it is possible to achieve higher resolution at desired locations of the mesh without 
increasing the number of elements. From this viewpoint, we can move the mesh in a way to have denser 
mesh in areas with higher stress gradients, i.e. closer to the cantilever end. This may be carried out without 
changing the mesh connectivity or number of elements. The initial and final mesh and the trend of its 
motion are shown in Fig. 1. The constitutive material of the nano-actuator is assumed linear elastic and 
only the static deflection of the nano-beam is considered. 

The ALE finite element equation can be obtained by discretization of equation of motion similar to 
the previous work [3-6]. The final form of ALE equation is written as 

                        ( ) ( ) ( ) t m i t g g i i qK u K u f  (1) 

where t mK  and t gK  are the element stiffness matrices related to material and grid motions, respectively 
and ( )if  is the element incremental load vector which contains the nonlinear form of displacement of 
element node. The definition of matrices t mK and t gK are given in reference [3-6]. 
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Fig. 1. Geometry, FE mesh and boundary condition for the nano beam 

 
The distributed force along the beam is modeled as 

                         Coulomb Dispersionq f f  , (2) 

where fCoulomb and fDispersion are the electrostatic (Coulomb) and quantum (Casimir or van der Waals) forces 
per unit length of the beam, respectively. The electrostatic force with first order fringing correction can be 
presented as the following equation [23]: 

                
 

 2
0

2 1 0.65
2

Coulomb

g wBVf
Bg w

  
  

  
 (3) 

where  =8.854×10-12 C2N-1m-2 is the permittivity of vacuum, V is the applied voltage, w is the deflection 
of the beam and g is the initial gap between the movable and the ground electrode.  

The dispersion forces per unit length of the beam (fDispersion) are defined considering the van der Waals 
and Casimir forces. For small gap, two nano-scale interaction regimes can be defined: First, the ultra-small 
separation regime (typically below several ten nanometers [24]), in which the van der Waals force is the 
dominant attraction. In this case, the attraction between two surfaces is proportional to the inverse cube of 
the separation: 

                        36 ( )Dispersion
ABf
g w




 (4) 

where A is the Hamaker constant. The second regime is the large separation regime in which the Casimir 
force is dominant (typically above several ten nanometers [24]). Considering some idealizations, the 
quantum force per unit length of the actuator is [17]: 

                      
 

2

4240
Dispersion

cBf
g w






h  (5) 

where h =1.055×10-34 Js is Planck’s constant divided by 2π and c=2.998×108 m/s is the light speed. 
It should be noted that the value of the applied force in each node depends on the beam deflection and 

the position of nodes in FE mesh. Figure 2 shows a sample grid point. The applied force in each node is 
calculated by multiplying the force distribution (Eq. 2) by element length between two adjacent nodes and 
then dividing the obtained value by the nodes. The Casimir and Coulomb forces are applied to the nodes 
in the lower layer of the beam while van der Waals force is applied to the centerline of beam. The direct 
iteration method [1] is utilized to find deflections in each step. The iteration process in each step is 
continued until the convergence criteria of deflections are satisfactory.  
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Fig. 2. Schematic view for computation method of applied forces 

 
For a N degree of freedom system, Eq. (1) produces 2N unknowns iu  and g

iu . Therefore, additional 
equations are supplied by defining a mesh motion scheme which defines the motion of grid points at the 
current incremental step. The supplemental equations introduce the relationship between material and grid 
nodal displacement [25], which is written as 

          ( ) ( )Bg i i u a u  (6) 

where vector a  and matrix B  are any desired motion assigned to each degree of freedom of the mesh by 
the mesh motion scheme [25].  

By substituting Eq. (6) into Eq. (1), the unknown grid displacements are eliminated from ALE 
equation and only material displacement appears in the final assembled ALE equation, thus reducing the 
size of solution.  

In this paper, the transfinite-mapping method is used for specifying grid displacements according to 
Ref. [25]. Final form of the equation of motion is obtained as:  

                        t m t g ( i ) ( i ) t gqK K B f Ku a  (7) 

The ALE-FE model of the total problem is found by assembling the equations of various elements. 
Afterwards, the fully discretized form of the total problem is obtained.  

In the next section, the static pull-in behavior of the nano-actuator is investigated and obtained results 
are discussed. In order to compare the result of this study with those of the literature, the following 
dimensionless parameters, Wtip,   and  are defined: 

                                ( )
tip

w x LW
g


  (8.1) 
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                       0.65 g
B
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where E is Young’s modulus, I is axial moment of inertia for the rectangular cross-section, B is width of 
rectangular cross section of beam, H is height of beam cross section and L is the length of nano-beam. 
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Relations (8-a), (8-b), (8-c), (10-d) and (8-e) correspond to dimensionless values of tip deflection, Casimir 
force, van der Waals attraction, applied voltage and fringing effect, respectively. 
 

3. RESULTS AND DISCUSSION 
a) Simulation result 
 
In order to demonstrate the ability of the presented ALE method in investigating the instability of 
cantilever nano-actuators, a typical narrow nano-actuator with L=30 μm, H=1 μm, g=2.5 μm, w=g and 
E=70 GPa is simulated. The deformed shape and FE mesh of the nano-actuator during the deformation are 
depicted in Figs. 3 and 4. Figs. 3 and 4 show the deflection of the actuator considering Casimir and van 
der Waals regime, respectively. When β increases from zero (Figs. 3b and 4b) to the critical pull-in 
instability point (Figs. 3d and 4d), mesh resolution increases near the fixed end of the beam due to the 
increase in elastic deformation at this region. 
 

 
 

Fig. 3. Deformed shapes and mesh motions during the deformation of actuator under Casimir force 
 

 
Fig. 4. Deformed shapes and mesh motions during the deformation of under van der Waals force 

 
In order to guarantee the reliability of the ALE method, the convergence of the obtained results is 

checked and the results are reported in Table 1. The number of elements are increased in height and length 
directions and the grid independency analysis is conducted. For the number of elements above 80, the 
error in computing pull-in voltage is less than 1 %. 
 

Table 1. Mesh convergence study result 
 

Number of elements (horizontal × vertical) PI (With Casimir effect) PI (With van der Waals effect) 
20(10×2) 0.7211 0.5865 
40(20×2) 0.8081 0.6655 
60(30×2) 0.8191 0.6681 
40(10×4) 0.7333 0.5934 
60(15×4) 0.7865 0.6333 
80(20×4) 0.8181 0.6677 

100(25×4) 0.8185 0.6680 
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Figure 5 shows the relationships between dimensionless applied voltage ( and cantilever tip deflection 
(Wtip) neglecting the quantum effects. Ignoring dispersion forces is a common assumption in modeling 
actuators with large initial gap values. This figure reveals that the fringing field effect (increase in ) 
increases the instability deflection while reducing the instability voltage of the system. It is observed that 
ALE-FEM results are in excellent agreement with the numerical results. Furthermore, ALE results are 
much closer to the numerical solution in comparison with those obtained in [17] using truncated series 
solution. This figure reveals that the proposed ALE technique is highly reliable to simulate the pull-in 
performance of nano-actuators. The ALE-FEM can be utilized as a powerful method in design procedures. 
 

 
Fig. 5. Relationships between β and cantilever tip deflection with and  

without fringing field effects,  = η = 0 
 
The influence of dispersion forces ( and ) on the tip deflection of the actuator (Wtip) for =0.65 is 
depicted in Figs. 6 and 7. These figures reveal that increase in vacuum fluctuations decreases the pull-in 
deflection and voltage of the actuator. Furthermore, the beam has initial deflection due to the presence of 
the dispersion forces even when no voltage is applied (=0). Interestingly, when the initial gap is small 
enough the nano-actuator can collapse onto the ground plane due to the dispersion forces even without any 
voltage appliance. 
 

 
Fig. 6. Relationships between β and tip deflection of a nano-beam  

for various Casimir parameters 
 

 
Fig. 7. Relationships between β and tip deflection of a nano-beam  

for various van der Waals parameters 
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b) Comparing ALE with other methods 
 

In order to compare the ALE-FEM results with those of the literature, the critical values of dispersion 
forces, i.e. c and c, have been reported in Table 2. Note that when the dispersion forces between the 
planes are large enough, the movable beam might collapse onto the ground without applying voltage. As 
seen, the critical values of dispersion force predicted via ALE-FEM are very close to the numerical values. 
This table reveals the reliability of the ALE-FEM in simulating nano-actuators. 
 

Table 2. Comparison of the ALE-FEM with other methods when no voltage 
 is applied on the actuator (=0) 

 
Model C Relative difference with 

numerical solution 
C Relative difference 

with numerical 
solution 

Numerical Solution [17] 0.94 - 1.21 - 
HPM [17] 0.81 13.8 1.20 0.8 
Lumped Model [17] 0.66 29.8 0.84 30.6 
Modified Adomian [19] 0.96 2.1 1.23 1.7 
Present method (ALE-FEM) 0.95 1.0 1.22 0.8 

 
It should be mentioned that the numerical solution in [17] is applied on the Euler beam theory. Therefore, 
this numerical solution is valid only for long beams (l/w>10) and is not acceptable for short actuators. 
However, the present ALE-FEM is reliable for both long and short beams due to application of the plane 
elements. Table 3 shows the comparison between numerical and ALE results for various beam length. 
This table reveals that the numerical and ALE results are very close for long beam but have considerable 
differences with numerical results in the case of short beam.  

 
Table 3. Comparison of the ALE-FEM results and those of numerical method  

 
The comparison between ALE and Lagrangian methods is presented in Table 4. Note that while the ALE 
initial mesh is uniform, the initial Lagrangian mesh is denser in the beam root. However, as seen in Table 
4, ALE method presents reliable results with fewer elements. Note that an arbitrary initially-selected 
Lagrangian mesh with denser mesh at the root might not be appropriate and optimization of the initial 
mesh to achieve an appropriate pattern might require further time-consuming analyses. 
 

Table 4. Comparison of the ALE results and Lagrangian method in the case of Lagrangian FEM, 
 denser mesh has been applied in beam root where the length of elements at root is  

1/3 of tip elements. Uniform mesh is applied for ALE analysis 

 
Note that, while the benefits of using ALE-FEM (instead of other Lagrangian-FEM) might not be 
surprising in simple NEMS problems, this could effectively reduce the computational cost in complex 
cases, e.g. damage and plastic deformation of dynamic NEMS, etc.  
 

Beam size(length×width×height) μm3 Gap(g) μm PI  (=η=0) 
Numerical 

PI  (=η=0) 
ALE 

300×0.5×1 2.5 1.191 1.191 
30×2.5×1 2.5 1.21 1.312 
10×2.5×1 2.5 1.954 3.843 

Number of elements 
(horizontal element × 

vertical element) 

With Casimir 
effects(PI) 
Lagrangian 

With Casimir 
effects(PI) 

ALE 

With van der 
Waals effects(PI) 

Lagrangian 

With van der 
Waals 

effects(PI) 
ALE 

20×4 0.7171 0.8181 0.5765 0.6677 
50×4 0.8178 0.8191 0.6675 0.6686 
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4. CONCLUSION 
 
In this article, an ALE-FEM was applied to investigate the static instability of cantilever beam-type nano-
actuators. The influence of electrostatic field (Coulomb force) and quantum vacuum fluctuations (Casimir 
attraction and van der Waals force) were incorporated in the model. It was shown that the fringing field 
increased the pull-in deflection while decreasing the pull-in voltage of the system. On the other hand, 
quantum vacuum fluctuations decreased both instability parameters of the system. The obtained results 
were compared with those of numerical and analytical methods reported in the literature. The comparison 
revealed that ALE-FEM could be applied as a reliable approach for simulating the pull-in instability of 
cantilever nano-actuators and designing nano-electromechanical systems.  
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