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A SELF-TUNED FUZZY-SET BASED POWER SYSTEM
STABILIZER WITH THE AID OF GENETIC ALGORITHMS

AND ARTIFICIAL NEURAL NETWORKS
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Abstract ~A fuzzy-set based power system stabilizer is proposed to enhance the stability of a
power system. The controller parameters are optimized using Genetic Algorithm (GA). An
Artificial Neural Network (ANN) is then trained so that the controller parameters are self-
tuned based on operating conditions. The performance of the proposed approach has been
assessed by simulating it on a single machine infinite busbar system.
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1. INTRODUCTION

A large scale power network represents a highly nonlinear system continuously subjected to various
types of small and large disturbances. To improve the overall damping behavior, the use of the so-
called Power System Stabilizer (PSS) is the current industrial practice. Essentially, the objective of a
PSS is to generate a supplementary stabilizing signal, which is applied to the excitation control loop
of a generating unit to induce a positive damping torque.

Advances in computer technology have made reliable digital devices and microcomputers
available at low cost. As a result, real-time computer control systems for power systems have become
feasible and realizable. Also, as generator and system dynamics change considerably with operating
conditions, much effort has been directed during recent years towards the development of digital
controllers based on advanced control strategies. This is why some topics such as adaptive control [1-4],
robust control [5], artificial intelligence [6-8] and fuzzy control [9-15] have appeared in the power
system literature.

Out of these schemes, fuzzy control presents an attractive proposition due to its low computation
burden, robustness and nonlinear behavior. In [9] a fuzzy logic PSS with learning ability is proposed.
The proposed PSS employs a multilayer adaptive network. In [10] a fuzzy logic rule-based method is
used to design power system stabilizers. The efficiency of the proposed method is tested in the
presence of system noise. A hybrid PSS is presented in [11]. Genetic algorithms are used to search for
near optimal settings of parameters. The experimental evaluation of an advanced fuziy logic PSS on
an analog network simulator has been presented in [12]. In [13], a rule-based fuzzy PSS was used to
enhance the stability of a case study system. The controller parameters were tuned by trial and error
approach. The fuzzy PSS proposed in [14] and [15] uses a fuzzy relation in which operating
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conditions of a synchronous machine are expressed by the quantities of speed deviation and
acceleration (derivative of speed signal) in the phase plane. Simple search was used to tune the
controllers. ‘

The present paper proposes an approach in which, instead of trial and error, the controller
parameters of reference [15] are optimized using the new search technique, genetic algorithm. It is
then proposed how an artificial neural network may be employed so that the controller parameters are

self-tuned for various operating conditions.
The structure of the present paper is as follows, The previous scheme will be first reviewed. The
proposed algorithms, as well as the results, are then described. Some concluding remarks are finally

provided.

2. PROPOSED ALGORITHM

The proposed algorithms are based on fuzzy set theory, genetic algorithms and artificial neural
networks. The fuzzy set theory is based on-notion of membership function to represent uncertainty. A
genetic algorithm is a parallel, global search technique that emulates natural genetic operators.

Artificial neural network has the capability of mapping, parallel processing and learning.
In this section, the previous scheme is initially reviewed. Following the description of the system
under study, the new algorithms are described in sections ¢. and d. Test results are provided in section e.

a) Review of previous scheme

The work referred to in [15] considers a single-machine connected to a constant voltage system as
in Fig. 1. The supplementary stabilizing signal u is added to the excitation control loop as shown
there. The required stabilizing signal is generated based on fuzzy set theory. Figure 2 shows the fuzzy
controller in more detail. The control signal, u, is computed by:

Control signal = (Signal sign) * (Signal amplitude) ¢y
. CIATRY
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Fig. 1.System representation

To calculate the signal amplitude and to determine its sign, the following procedure is performed.
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At each sampling time, the operating condition may be expressed by a point, say A, in phase plane as
shown in Fig. 3. e and ¢ are the speed deviation and its first derivative, respectively, while k and ky are
controller parameters as shown in Fig. 2. With reference to this figure, the following points are worth
mentioning [14];

I.  The stable operating point is the origin where ¢ and ¢are zero. The further the point A distance is
from the origin, the more control effort is required.

I.  With a physical situation in mind, an operating condition lying above a line d, (see Fig. 3); ‘where
k-et+ kqé=0.; requires a positive control signal to move towards the origin while one below do
requires a negative control signal. The posmon of hne d, is, however, not exactly known. This is
where the fuzzy theory comes into play. o

micro computer

-------------------------------------------

k ,
. Fuzzy-set based
PD

Fig. 2. Fuzzy PD controller

k.8
ad

&/2

Fig. 3. Phase plane in PD controller [15]

With aforementioned points and with reference to Fig. 3, at each sampling time the control signal
is calculated as:

Upmax if u(n) 2 vy,
u(n)=13k, R(2N(G)-1) if Uy <U(n) <tt 2)
U pin if un) < u

Where R'is defined as the distance from A to the origin in the scaled phase plane (note that in Fig. 3,
the plane was scaled by k and k), i.e.:
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R =J(k-e)2 +(ky-e)? , (3)
and N(0), O are defined as shown in Fig. 4 where an overlapping angle of @ is assumed (see Fig. 3). The
function N(8) equals to 1 for 9<(90°—%) and zero for 6>(90° +% ). Comparing Egs. (1) and (2) reveals

that (2N(B)-1) determines the control signal sign. In other words, (2N(0)-1) is between zero and 1
for8 90° and between zero and -1 for 6>90°. The amplitude of the control signal depends on (k,.R)
and also on the absolute value of (2N(6)-1). As k, has a similar effect on both k and kg, it may be
chosen arbitrarily. As a result, o, k and k4 are the main parameters to be determined. In [15], these
parameters were determined using a simple search by minimizing the following performance index:

J= %[tk Ao(k)? )

where t, = k-T; T represents the sampling period.

F Y .
; Mgy o< < 180
OB b oo
i . e
a 90~ % 90" 90% % 180

Fig. 4. Membership function in terms of 6 (u>0)

b) The system under study

The system under study is a single machine connected to an infinite busbar as depicted in Fig. 1.
The output limiters of the controller shown in Fig. 2 are selected to be +0.05 p.u., according to the
guidelines in [16]. The relevant data are provided in Appendix 1.

¢) GA tuning of parameters

GA can be used for minimizing functions, which are not defined explicitly by their variables.

Considering the settling time (t;) of the syétem output (say, the rotor angle of the generator) as the
performance index, it should be as low as possible. GA, as an intelligent search technique, can be
- used to determine, k, kg, and k, in such a way that t; is minimized.
" As mentioned before, an arbitrary value may be assigned for k, as it has a similar effect on k and
ky. Hence, there are three parameters, namely, k, ks and a (see section 2a) to be tuned by the genetic
algorithm. Every point in the searching space is thus represented by a chromosome type as shown in
Fig. 5. The number of bits for each parameter is chosen after some trials. The tuning condition is for
the case that the system is subjected to 1% step change in the voltage reference setting (V) of the
excitation system. A performance with the least amount of settling time is considered to be the best,
so that the fitness of chromosome j is represented by:

ﬁtness(kj, k;, aj) = ———-—*1——*-—-—- (5)
t,(k’, k},a’)

where t; is the settling time.
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Fig. 5. Chromosome type

The crossover rate (p.) is chosen to be 0.85, so as to give some of the population the opportunity
to survive into the next generation without any change. The mutation rate (p) is chosen to be 0.02, so
that on average 2 strings in the population are mutated. For the number of population of 20, the
genetic algorithm is run for 42 generations. The sets of parameter values with the best fitness are
provided in Table 1 for four typical operating conditions (91-q4).

Table 1. Genetic algorithm output

Operating | P(p.u) | Q(pw) | Vilpuw) |  k kq o
condition ;
Q 0.3 0.2 1.07 287 | 0420 46
T 0.5 -0.05 0.93 2.13 0.393 48
QG 0.7 0.3 1.03 2.33 0.417 47
Q 1.0 0.5 1.00 2.49 0.380 50

d) Neural network tuning

As shown in Table 1, the set of best controller parameter- values is different for each operating
condition. For instance, if the controller is tuned for operating condition qu, robust performance
cannot be guaranteed for other operating conditions. Figure 6 shows such a condition in which the
output has small undecayed oscillations around its final value. This is caused by a weak transmission

system (i. €. high Xe).
-3
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Fig. 6. Small undecayed oscillations in (P=0.5, Q=-0.15, V,=. 9124)
when the controller tuned m Q4

In order to achieve a robust performance for various operating conditions, a self-tuned fuzzy
controller may be designed using an artificial neural network. As a strong coupling exists between the
injected reactive power and generator terminal voltage, a neural network is chosen as shown in Fig. 7,
in which P and Q (injected active and reactive powers, respectively) are the inputs and the controller
parameters (k, and o) are the outputs. For mapping purpose, a backpropagation approach is
employed due to its simplicity and sufficient accuracy. One hidden layer is chosen. For the purpose of
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determination of the number of neurons of the hidden layer, the network is trained for a different
number of neurons and the following error index is calculated [17]:

E,, =J%Z(ades,i __Ocout,i)Z +(kdes,i __kout,i)2(kddes,i ___kdout,i)2 (6)
p

Where p is the number of training patterns and "des" and "out" represent the desired and calculated
outputs, respectively. The calculated indices for 6,7 and 8 number of hidden layer neurons are 0.055,
0.046 and 0.017, respectively. As a result, a layer with eight neurons is selected to give sufficient

accuracy.

Fig. 7. The employed neural network

During training, while error decreases, to avoid oscillations around the optimum point in the
weights space, m (learning rate) and B (momentum constant) should be decreased. Different
functions of error, as shown in Egs. (7) through (12), are considered fornand p . Parameters of these
functions were determined for the best performance through trial and error.

1- p=05¢1-¢19F ) @)
£ =03

2- n=0.141142(Err—0.01) @®)
£=03

3-7=05 &)
£ =03 '

4- n=03822 2276 £ (10)
£=03

5- n=0.491 1834 £ 1D
ﬂ=0‘394 e1.159Err .

6- 1=0.356 ¢ B8 E” (12)

The results are shown in Fig. 8. It clearly shows the faster convergence rate for case 6, so that in
effect, 7 and g are selected as suggested by Eq. (12).

0.4

epoch(=100)

Fig. 8. Error variations in terms of nand 8

Iranian Journal of Science & Technology, Volume 23, Number 1 January 1999



A self-tuned fuzzy-set based power system... 7

¢) Results

The performance of the proposed controller is assessed in response to:

1. 1% step change in voltage reference setting of the excitation system.

II. 1% step change in power reference setting of the governor.

III. Three phase short circuit fault of 60 msec duration at generator terminals with successful
reclosure. :

The following two operating conditions are considered:

I.  Operating condition A: P=10p.u,Q=05p. u. -
II. Operating condition B: P=0.4p.u,Q=0.1p. u.

The overall results are shown in Figs. 9 through 14 with the following descriptions:

1. Figures 9, 10 and 13 show the performances of the self-tuned PSS in the operating condition A,
which was one of the learning patterns. The performances shown indicate that the neural network
has memorized the data used during the learning process.

2. Figures 11, 12 and 14 show the performances of the self-tuned PSS in the operating condition B,
which was not used as a learning pattern. The performances shown indicate that the neural
network can interpolate effectively.

Generally, the results clearly demonstrate that the proposed ANN tuned fuzzy PSS provides high
performance, i.¢., settling times as low as possible are achieved in all cases.
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Fig. 9. 1% step changes in Vref (condition A) dotted: without
PSS, solid: with self-tuned fuzzy PSS
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Fig. 10. 1% step changes in Pref. (condition A) dotted: without
PSS, solid: with self-tuned fuzzy PSS
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Fig. 11. 1% step changes in Vref (condition B) dotted: without
PSS, solid: with self-tuned fuzzy PSS
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Fig. 12. 1% step changes in Pref (condition B) dotted: without
PSS, solid; with self-tuned fuzzy PSS
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Fig. 13. Three phase short circuit fault with successful reclosure at the generator terminals-
Condition A dotted: withoug PSS, solid: with self-tuned fuzzy PSS
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Fig. 14. Three phase short circuit fault with successful reclosure at the generator terminals-
Condition B dotted: without PSS, solid: with self-tuned fuzzy PSS
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3. CONCLUSIONS

A fuzzy logic power system stabilizer was proposed in which the controller parameters were tuned
using gerietic algorithm. An artificial neural network, with P and Q as its inputs, was then trained so
that the controller parameters were self-tuned based on operating conditions. The authors are in the
process of using the algorithm in a multi-machine environment. Real time tests are also under
investigation in which noise problems, digital signal processing speed, unexpected changes in system
conditions (for instance, change in X,), etc., are considered.

~ NOMENCLATURE
e Speed deviation (error)
é First derivative of error
u PSS output signal
k The scaling factor of error in scaled phase plane
ks The scaling factor of the first derivative of error in scaled phase plane
ky, PSS output gain
o Overlapping angle for the loci corresponding to u>0 and u<0
) Angle between location vector of point A and normal vector to line d,
N(©) Membership function of the loci corresponding to u>0
R Distance from the origin, in scaled phase plane
ts Settling time
o Generator rotor speed
Vi Generator terminal voltage
V; Generator terminal voltage reference
Eg Generator field voltage

REFERENCES

1. Malik, O. P, Hope, G. S, Cheng, S. J. and Hancock, G., A multi-micro computer based on dual rate self-
tuning power system stabilizer, /EEE T-EC, 2, pp.355-360 (1987).

2. Xia, D, Heydt, G. T., Self-tuning controller for generator excitation control, JEEE T-PAS, 102, pp.1877-
1885 (1983).

3. Hsu, Y. Y. and Liou, K. L., Design of self-tuning PID power system stabilizers for synchronous generators,
IEEE T-EC,2 pp.343-348 (1987).

4. Seifi, H. and Hughes, F. M, Acceleration based self-tuning power system stabilizer, Int. Journal of
Control, 50 (1990). .

5. Sedigh, A. and Alizadeh, G., Design of robust PSS using quantitative feedback theory, IEE Conf. (1994).
Hiyama, T. and Sameshima, T., Rule-based stabilizer for multi-machine power systems, JEEE T-PWRS, 5,
pp.403-411 (1991).

7. Lubosny, Z., Improvement of the synchronous generator performance by using knowledge base in ANN
controller, Proceedings of the 31st UPEC, Greece (1996).

8. Abdel-Magid, Y. L. and Dawoud, M. M., Tuning of power system stabilizers using genetic algorithms,
Electric Power Systems Research, 39, pp. 137-143 (1996).

9. Hariri, A. and Malik, O. P., Fuzzy logic based power system stabilizer with learning ability, JEEE T-EC,
11, pp.721-727 (1996).

10. Sharpe, T. L., Nehrir, MH. and Pierre, D. A., Fuzzy rule-based power system stabilizer for enhancing

January 1999 Iranian Journal of Science & Technology, Volume 23, Number 1

- .



10

11.

12,

13.

14.

15.

16.

17.

18.

H. Seifi /M. M. Pedram

power system damping, Proceedings of the 56th Annual American Power Conference, pp. 784-789 (1994).
Handschin, E., Hoffmann, W., Reyer, F., Stephanblome, T., Schlucking, U., Westermann, D. and Ahmed,
S.S., New method of excitation control based on fuzzy set theory, JEEE T-PWRS, 9, pp. 533-539 (1994).
Hoang, P. and Tomsovic, K., Design and analysis of an adaptive fuzzy power system stabilizer, JEEE T-
EC, 11, pp. 125-131 (1996).

Hsu, Y. Y. and Cheng, C. H., Design of fuzzy power system stabilizer for multi-machine power systems,
1EE Proc., 137, pp.233-237 (1990).

Hiyama, T. and Sameshima, T., Fuzzy logic control scheme for on-line stabilization of multi-machine
power systems, Fuzzy Sets and Systems, pp. 181-194 (1991).

Hassan, M. A. M., Malik, O. P. and Hope, G. S., A fuzzy logic based stabilizer for a synchronous machine,
IEEE T-EC,6, pp.407-413 (1991).

Larsen, E. V. and Swann, D. A., Applying power system stabilizers, JEEE T-PAS, 100, pp. 3017-3044
(1981).

Widrow, B. and Lehr, M. A, 30 years of adaptive neural networks: perceptron, madaline and
backpropagation, Proceedings of IEEE, 9, pp.1415-1441 (1990).

Arrillaga, J. and Arnold, C. P., Computer modeling of electric power systems (1983).

Appendix I [18]

The synchronous machine parameters are:

x4= 1.445 p.u,, H =4.27 Sec,, T4 = 5.26 Sec.
x'¢= 0316 p.u, fo=50.0 Hz., T" = 0.16 Sec.
x"=0.162pu., : x5~ 0.959 p.u. R.=0.001 p.u,

T"4,=0.028 Sec., x"3=0.179 p.u. D=00

and governor and turbine data:
T,=T,=1.0Sec., Reg=0.04, T5=T4=0.25 Sec., Cma=1.0 p.u. /Sec, Opa=0.1p.u. /Sec

and finally excitation system data:
K, = 200, K; = 0.015, K. = 1.0,7,=14 = 0.0, 1= 1.0 Sec., T, = 0.03 Sec., Vamax = 6.0 p.u.,Vymin = -6.0

p.u

Iranian Journal of Science & Technology, Volume 23, Number 1 January 1999



